oral aperture has been detected, e.g. *Herpetomonas, Polytona, Hexamita, and Trichomonas*, that the animalcules derive their nutriment, as in the case of the Opalinidae, by the direct absorption, at all points, of the proteaceous material held in solution in the fluid media they inhabit. Whether this latter be the hæmal or perivisceral fluid of a higher animal, an animal maceration, or a vegetable infusion, protein in its concentrated and more or less diffused condition is invariably present, and its direct absorption under such circumstances by the contained unicellular animalcules would be strictly analogous to the alimentary process as performed by the individual cell-units of the intestinal tract of all the more highly organized Metazoa. These beings, in fact, live continually immersed within a, so to say, ready prepared bath of nutritive broth, and require no display of energy beyond the passive one of assimilation or endosmosis for the satisfying of their creature wants. So far, a group of Flagellata presenting the physiological characteristics here submitted, has been entirely overlooked, its representatives being simply collated with the ordinary mouthed or mouthless species. Even Stein, in his recently published monograph,* erroneously represents such unmistakable Pantostomatous forms as *Oikomonas, Spumella, and Anthophysa* as possessing a well-defined oral aperture.

The *Flagellata-Pantostomata*, in common with the order of the Eustomata, may be conveniently divided into three minor sections or sub-orders, with reference to the number of flagellate appendages, as indicated in the foregoing schedule.

A.—PANTOSTOMATA-MONOMASTIGA

(one flagellum only).

Fam. I. **MONADIDÆ**, Ehrenberg.

Animalcules naked or illoricate, entirely free-swimming; flagellum single, terminal; no distinct oral aperture; an endoplast or nucleus and one or more contractile vesicles usually present.

Genus I. **MONAS**, Müller.

Animalcules free-swimming, exceedingly minute, globose, ovate, or elongate, plastic and unstable in form, possessing no distinct cuticular investment; flagellum single, terminal; food-substances incepted at all parts of the periphery, not provided with a distinct mouth; a nucleus or endoplast and one or more contractile vesicles mostly conspicuous; multiplying by longitudinal or transverse fission, or by encystment and the subdivision of the entire substance of the body into a less or greater number of sporular elements.

Inhabiting salt and fresh water, especially abundant in infusions.

In the genus *Monas*, as here delimited, are included the simplest known forms of the typical Infusoria-Flagellata. Its specific representatives exhibit, so far as at present discernible, no higher degree of organization than that of mere specks of more or less granulate and vacuolar nucleated protoplasm, and possess as a locomotive appendage a single thread-like vibratile flagellum. Their extreme simplicity of contour, combined with their very minute size and apparent absence of all readily appreciable differential characteristics, necessarily renders it an exceedingly difficult task to discriminate between the innumerable so-called species that have from time to time been referred to this genus. A large proportion of these latter are without doubt

* 'Infusionsthiere,' Abth. iii., 1878: Der Flagellaten.
simply varieties of the same type, transitional or larval conditions of other Flagellate Infusoria or Radiolaria, which commence their existence as similar simple uni-flagellate beings, or it may be the initial or zoospore phases of Algae, Palmellaceae, or other Protophytic plants. Such being granted, it is only in a provisional sense, and until their correct status shall have been decided by the light of more modern investigation, that the majority of the specific forms collated under the present generic title are admitted to this volume. Of those four or five types alone that are placed first on the list can it be said that sufficient is known to permit of their recognition as distinct and independent beings, and it is upon these few only that the amended diagnosis of the genus, as here given, is constructed. While thus obliged to leave a considerable number of species in an undecided and probational position, the main object aimed at by the author will, it is hoped, be accomplished, and the genus *Monas* be established upon a secure and substantial footing.

By the earlier writers, every animalcule whose dimensions were so minute that it presented under the highest magnifying powers then available the aspect of a mere motile speck, was consigned to this genus, while by even the most recent investigators an almost equally incongruous assemblage of microscopic beings is similarly dealt with. Thus Cienkowski, in his recent accounts of monadiform organisms, includes under this same generic title both uniflagellate and biflagellate animalcules; Stein, again, in his recently published volume of plates, without detailed descriptions, of the Infusoria-Flagellata, delineates as typical representatives of the genus *Monas* those triflagellate, voluntarily attached, or free-swimming forms out of which, upon ample grounds, Cienkowski formulated some years previously the genus *Sphumella*. Typical members of the present genus, as here defined, are in the same work referred by Stein to the genus *Cercomonas*; a step in the right direction being at the same time accomplished by his elimination of the stomatode forms *Monas grandis*, *M. semen*, and *M. ochracea* of Ehrenberg, and creation for the same of the independent genera *Colomonas*, *Raphidonas*, and *Chrysonomas*.

Particular and accurate attention should, above all things, be directed, in the future investigation of these minute beings, to the manner in which food-matter is ingested, it being only those entirely free-swimming, uniflagellate forms which are capable of incepting such pabulum at all parts of their periphery, after the manner of an *Amoeba*, or which, as is probably the case of *Monas Dallingeri*, absorb nutriment in a fluid form through the same generally diffused area, that can rightly lay claim to the present generic title.

Body ovate, rounded posteriorly, the anterior extremity more pointed and slightly curved, surface smooth; flagellum from one to one and a half times the length of the body, flexible throughout when young, rigid towards the base in older specimens; no endoplasm or contractile vesicle as yet detected. Locomotion straight and uniform, without jerking or irregularity. Length 1–4500" to 1–4000".

HAB.—Fish macerations.

The author has much pleasure in connecting with this species the name of the authority who, in conjunction with Dr. J. Drysdale, has contributed so largely to our knowledge of the minute organisms now under consideration. In their published "Researches into the Life-history of the Monads," already quoted at pages 29 and 133, this particular form is figured and described * under the title of the simple "uniflagellate" or "multiple-fission" monad, and was obtained in great abundance in a maceration of cod's head three months old. Its life-cycle, as worked out by these indefatigable investigators, yields to none in the interest and completeness of

* 'Monthly Microscopical Journal,' vol. xi., No. lxii., 1874.
the phenomena elicited, and represents, indeed, the only member of the genus Monas par excellence, as here recognized, with whose entire developmental manifestations we are at present conversant.

The reproductive phenomena of this particular species, as reported by Messrs. Dallinger and Drysdale, may be briefly epitomized as follows. The extraordinarily rapid multiplication of this type being unaccounted for by the ordinary process of transverse fission, or by the production of minute spores requiring time to develop to maturity, a further investigation elicited that under certain conditions there intervened a supplementary process of fission, by which as many as from thirty to sixty individuals of appreciable size were produced from a previously single zooid. The indications given by an individual about to increase by this multiple mode of fission were its adoption, first, of a somewhat rounded outline, then of a more irregular and slightly ameboid form, and finally of a simple spheroidal contour. In this last condition only, the flagellum disappeared, and the animalcule entered upon a perfectly quiescent or encysted state. Patently watched with an amplification of about 3000 diameters, a cruciform mark or constriction was observed to appear suddenly, dividing the sphere into four equal portions (Pl. XIII. Fig. 3), other divisional lines quickly following, until the entire body was partitioned by deep curved indentures with innumerable segments. An active whirling motion of the sarcod then ensued, lasting from ten to as many as seventy minutes, and at the end of this period it broke up into numerous sausage-shaped bodies as shown at Fig. 5. These now exhibited a quick writhing motion upon each other, which lasted for a space of seven to thirty minutes, the whole mass finally falling to pieces or detaching itself separately as uniflagellate monads, identical in shape, though of smaller size, with the original or parent animalcules. No separate investigating membrane or indurated cyst was at any time associated with this process of multiplication, the separate segments being held together until the time of their final liberation by mere cohesion of their constituent sarcod. Reproduction by spores, produced by the genetic union or coalescence and encystment of two individuals, was likewise ascertained by Messrs. Dallinger and Drysdale to play an important part in the developmental life-cycle of this form. The zooids upon whom this special and more important mode of propagation devolves are of slightly larger size and more rounded outline than the ordinary forms; the anterior extremity, or that nearest to the flagellum, is also conspicuously and coarsely granulate.* Moving among the smaller animalcules, they fix themselves to one of these as shown at Fig. 7, and the two swim about joined to one another for a considerable interval. The smaller monad is at length completely absorbed into the substance of the larger one, whose movements now become sluggish, and terminate in its assumption of a slightly flattened subspherical and encysted state (Fig. 8). The encystments, after remaining quiescent for about thirty-six hours, open slowly, liberating, as shown at Fig. 9, what appears to be merely a bary fluid, differing slightly in density only from the surrounding water. Examined with the highest available amplifying glasses—that is, a 10-inch objective, with a magnifying power of from 2500 to 15,000 diameters, no granular composition indicating the presence of spores could be detected in the discharged fluid, but in about seven hours after its emission minute points, hitherto too small for detection, made their appearance, and rapidly increased in size. Movements in these granular points were detected in the course of the next five hours, and soon after this they swam off, corresponding in all respects, except for their slightly smaller size, with the typical monads from whence they originally sprang.

Monas fluida, Duj. Pl. XIII. Figs. 10–18.

Body soft and semifluid, exceedingly variable in shape; its most regular contour elongate-ovate or subcylindrical, with the length equal to about three times the diameter, but more frequently widest anteriorly,

* By accident the artist has omitted to reproduce the more coarsely granular aspect of the anterior region.
tapering towards the opposite extremity, and there prolonged in an attenuate tail-like manner, the sarcod of this tail-like prolongation often ragged in outline or irregularly branched; flagellum flexible throughout, equalling the body in length; contractile vesicle posteriorly located; endoplast conspicuous, spherical, subcentral. **Length of elongate-ovate zooids 1–1500".**

HAB.—Vegetable infusions.

The species agreeing with the foregoing diagnosis, and, so far as it is possible to determine, identical with the *Monas fluida* of Dujardin, has been obtained abundantly by the author from hay infusions in fresh water. It usually makes its appearance on the fourth day of maceration, and is often for the next day or two the most abundant and dominant type, finally succumbing, however, in its turn to the onslaughts of its more powerful congener *Dinomonas vorax* and *tuberculatus* hereafter described. The varieties of contour assumed by this remarkably plastic monad are too numerous for description; but a few of the more prominent of these are illustrated in the accompanying figures. In the most attenuate example the entire length of the body, including the tail-like prolongation, is equal to seven or eight times its greatest breadth. The characteristic plasticity of the sarcod of this type would seem in all instances to attain its highest development at the posterior extremity; on many occasions individuals were observed to adhere by this region to the glass object-carrier, and to become drawn out into an attenuate shape by the mere force of the capillary currents induced by the partial evaporation of the water. In this method of adhesion the species may be said to advance a step towards the development of a temporarily adhesive pedicle as obtains in the genus *Oikomonas.* Not unfrequently the anterior extremity is abruptly or obliquely truncate, the animalcule in the latter instance, when a subcylindrical contour is preserved, presenting an appearance, excepting for the absence of the secondary flagellum, closely corresponding with that of *Chilomonas.* The inception of particles of indigo at various points of the periphery was frequently observed, as also the coalescence of two animalcules, and the assumption by both these and by the solitary zooids of an encysted state. The *Monas sucissa* of Perty, characterized by its ragged and not unfrequently bifurcate posterior border, is possibly identical with this species. On altogether insufficient grounds Diesing has proposed to elevate this last-named type, as described by Perty, into a new genus, conferring upon it the title of *Dicercomonas.*

Monas ramulosa, Stein, sp. **Pl. XIII. Figs 22–24.**

Body elongate, subcylindrical, widest posteriorly, tapering and conical at the anterior extremity, three or four times as long as broad, the entire peripheral surface frequently produced into a greater or less number of attenuate lobate or digitiform prolongations; flagellum as long or longer than the body; contractile vesicle spherical, posteriorly located, sometimes subdivided into three or four smaller vacuoles; endoplasm subcentral or anteriorly situated; endoplasm granulate. **Length 1–650” to 1–325".**

HAB.—Fresh water.

This animalcule is figured, but not described, in Stein's recent work 'Infusionsthiere,' Abth. iii., 1878, under the name *Cercomonas ramulosa*; but as in no one of the examples delineated is an indication given of the caudal filament which so essentially characterizes the last-named genus as here amended, its transfer to the present one has been decided on. In some respects the general contour and remarkable modification of the cuticular surface approximate this type to the *Monas fluida* of Dujardin; but the prolongations of the surface of the periphery take a more definite digitate appearance. Should this species, in common with many other members of
ORDER FLAGELLATA-PANTOSTOMATA.

the group, pass through a repent phase of existence, its correspondence under such conditions with the members of the Rhizo-flagellate genus *Mastigamoeba* of Max Schulze must be eminently conspicuous.

Monas obesa, Stein, sp. Pl. XIII. Figs. 20 and 21.

Body elongate, subcylindrical, widest and rounded posteriorly, attenuate and conically pointed anteriorly, about three times as long as broad, the periphery usually produced at variable points into one or more attenuately pointed, rectilinear, pseudopodal prolongations; flagellum equal to or exceeding the length of the body; endoplasm located in the median line towards the anterior extremity; contractile vesicle spherical, posteriorly situated, sometimes divided into two secondary vesiculae; endoplasm coarsely granular. Length 1-650". HAB.—Fresh water.

This species is figured by Stein,* under the title of *Cercomonas obesa*; but is evidently, as in the case of his *Cercomonas ramulosa*, correctly referable to the present generic group. In addition to the two examples figured by him as possessing respectively one and two posteriorly, but not terminally, developed pseudopodal prolongations, a third specimen, as reproduced at Fig. 20, is represented with an anterior conical prolongation only that projects close to the insertion of the flagellum. To some extent the body-contour of this type corresponds with that of *Sterromonas formicina*, represented at Pl. XXIV. Figs. 39 and 40.

Monas irregularis, Perty. Pl. XIII. Fig. 19.

Body more or less globular, hyaline; flagellum slender throughout, mostly curved at its distal extremity, over twice the length of the body; contractile vesicles two in number, minute, situated close to the lateral border; endoplasm distinct, located centrally towards the anterior extremity. Length 1-2500" to 1-1250". HAB.—Pond water.

The animalcule figured, and briefly alluded to by Cienkowski under the above title,† is here provisionally accepted as the type of this species. The specific form upon which Perty originally conferred this name, while corresponding in general contour and proportions, is represented as not unfrequently exhibiting capillary or angular peripheral extensions. This phase possibly represents the typical amoeboid condition assumed previous to the act of encystment and multiplication by segmentation. In one of Cienkowski's figures the retention of a large particle of food within a vacuole at the posterior extremity is clearly indicated.

Monas parasitica, Cienkowski, sp.

Body irregularly ovate, rounded anteriorly, smooth and transparent; flagellum very long and slender, more or less curved, three or four times longer than the body; contractile vesicles two or three in number, anteriorly situated; endoplasm central, spherical. Length 1-1000".

HAB.—Fresh water.

Described by Cienkowski as *Pseudospora parasitica*. In its normal free-swimming and flagellate condition this species frequently exhibits posterior lobate extensions of the periphery; the amoeboid phase preceding encystment is of short duration.

* 'Infusionsthiere,' Abth. iii., 1878.
† 'Archiv für Mik. Anat.,' Bd. i., 1865.
The body occupies but a small space within the membranous envelope of the cyst, and breaks up into numerous sporular fragments, the indigestible residue of the incepted food-particles being cast aside within the cavity of the cyst.

Monas nitellarum, Cienk., sp.

Body minute, globose; flagellum very slender and attenuate, six or seven times as long as the body; encystment spherical, double walled. Diameter 1–2500". HAB.—Fresh water, among decaying matter.

Synonymous with the *Pseudospora nitellarum* of Cienkowski.

Monas concava, Duj.

Body circular, meniscoidal, concave on one side and convex on the other, thin centrally, the margin tumid; flagellum long and slender, vibrating throughout its length. Diameter 1–2000". HAB.—Marsh water.

It is impossible to decide whether this and the three following species referred by Dujardin * to the genus *Monas*, belong to that generic group as here constituted, or whether they do not represent imperfectly observed or imperfectly developed animalcules of other Flagellata. Their admission here must consequently be regarded as entirely provisional.

Monas elongata, Duj.

Body elongate, nodular, flexible, and changeable in form, vacuolate; flagellum long and slender. Length 1–1250". HAB.—Putrid infusions with marsh water.

Monas attenuata, Duj.

Body ovoid, tapering at the two extremities, nodular and vacuolate; flagellum thick at its base, continuous with the pointed apical extremity. Length 1–1500". HAB.—Putrid marsh water.

Dujardin intimates that a slightly more pronounced development of the posterior extremity would necessitate the allotment of this form to the genus *Cercomonas*.

Monas oblonga, Duj.

Body oblong, irregular, tuberculate, enclosing numerous vacuoles; flagellum distinct, somewhat thickened at the base. Length 1–3000" to 1–1600". HAB.—Vegetable infusions.

Monas varians, Duj.

Body oblong, tapering anteriorly, its substance soft and glutinous, exceedingly plastic and changeable in form. Length 1–800" to 1–625". HAB.—Ditch water.

Monas constricta, Duj.

Body elongate, four or five times as long as broad, blunt, and rounded posteriorly, narrower and often constricted in the centre. Length 1–1250". HAB.—Infusions of gelatine with chlorate of potash.

This species is probably identical with the form described further on under the title of *Sterromonas formicina*, the second flagellum being of such small size as to have easily evaded the resolving capacities of the magnifying lenses at Dujardin's disposal. At the same time, another species—*Oikomonas mutabilis*—presents in its free-swimming condition a somewhat similar elongate and constricted contour.

Monas Oberhauserii, Fres.

Body cylindrical, rounded at each extremity, hyaline, faintly carmine-coloured, enclosing a variable number of intensely crimson globules; flagellum apparent only through the movements of the animalcule, which are rotatory and tumbling. Length 1-2000" to 1-1150".

HAB.—Sulphur spring at Frankfort.

This monad is probably identical with the *M. Okeni* of Ehrenberg. The *M. bipunctata* of Fresenius, found under similar conditions, but of smaller size, with an elongate-oval figure, and enclosing one or more red points at each extremity, apparently represents an earlier stage only of this form. The *Monas truncata* of Fresenius, possessing two flagellate appendages, has been selected by Stein as the type of the new genus *Goniomonas*.

Monas lamellula, Müller.

Body minute, compressed, diaphanous, two or three times as long as broad; flagellum long and undulating; movements forward in a zigzag manner. Length 1-2000." HAB.—Salt water.

Originally described by O. F. Müller as a marine form, but reported to De Fromentel, also from fresh water.

In accordance with the views of the author, both this and the ten succeeding specific types—embodied by De Fromentel in his *Études sur les Microzoaires*, Paris, 1876, and identified by him on the most slender grounds with the species bearing the same titles first described by O. F. Müller, Ehrenberg, and Dujardin—might be advantageously consigned to the appended list of "Doubtful species". In no single instance are the characters given sufficiently explicit for their absolute identification as typical representatives of the genus *Monas*.

Monas Kolpoda, Ehr.

Body convex on one side, flattened on the other, the anterior extremity pointed and bearing a long flagellum; parenchyma enclosing green granules; movement oscillating. Length 1-1600". HAB.—Fresh water.

The above diagnosis, as recently given by De Fromentel, scarcely agrees with the original one of Ehrenberg, who characterizes this species as oval or egg-shaped, having a length of 1-7200" only.

Monas ovalis, Ehr.

Body ovate, colourless; motion tremulous. Length 1-9600".

De Fromentel describes this species as differing from *M. deses* only in its absence of colour and the less development of the flagellum. Ehrenberg gives as its habitat the water from the fresh-water mussel, *Anodon*.

ORDER FLAGELLATA-PANTOSTOMATA.
Monas gibbosa, Duj.

Body oblong or spheroidal, the surface having irregular distensions and gibbosities; flagellum long and undulating, usually springing from a narrowed anterior region of the body. Length 1-2500".

This type was encountered by Dujardin in an infusion of gelatine, in company with Monas lens, and of which, as he remarks, it possibly represents an altered condition or variety. De Fromentel refers a form to this species agreeing with it in general contour, but having the cuticular surface striate and granular, and with a conspicuous lateral contractile vesicle.

Monas globulus, Duj.

Body subglobose, compressed and pointed anteriorly, constant in form; flagellum springing from the narrower anterior end; surface smooth or faintly granulate. Length 1-1700". HAB.—Salt water.

Dujardin describes this form as differing from Monas (Heteromita) lens in the more spherical form of its body, and in the absence of the superficial tuberosities which frequently distinguish that species. De Fromentel reports the same type from fresh water.

Monas mica, Müller.

Body oval, inconstant in form, tapering anteriorly, transparent, coarsely granulate; movement slow and oscillating. Length 1-1200". HAB.—Fresh water.

This species is recognized under the above title by Müller, Ehrenberg, and De Fromentel.

Monas vinosa, Ehr.

Body globular; colour wine-red; motion tremulous. Length 1-1200" to 6000". HAB.—Vegetable infusions.

The Monas rubra of De Fromentel, of equally minute dimensions, and thus characterized: "Body rounded, furnished with a long and relatively thick flagellum; colour bright red; motion slow and tremulous," is apparently identical with the above form. Both are, however, probably rightly referable to the Palmellaceae or Protophytes.

Monas nodosa, Duj.

Body irregularly oblong, tapering posteriorly; the frontal margin truncate; flagellum springing from the centre of this truncate border; surface nodular. Length 1-2000". HAB.—Salt water.

De Fromentel ascribes to this species a fresh-water habitat.

Monas viridis, Duj.

Body spherical, one half transparent, the other green; flagellum long and slender; living socially. Diameter 1-2000". HAB.—Fresh water.

This species is probably the motile spore of some Algal. Dujardin refers it with doubt to the genus, but De Fromentel has thought fit to retain it.
ORDER FLAGELLATA-PANTOSTOMATA.

Monas depressa, From.

Body elongate, the two extremities rounded; the ventral side flattened, the dorsal one convex; flagellum always directed beneath. Length 1-1600".

HAB.—Fresh water.

This is probably a species of *Petalomonas*.

Monas sphaerica, From.

Body irregularly spherical; surface granulate, enclosing minute red corpuscles; flagellum always directed beneath, about three times the length of the body; contractile vesicle conspicuous, postero-lateral. Diameter 1-1000".

HAB.—Fresh water.

This species is almost the only representative of the genus satisfactorily delineated by De Fromentel, its larger size permitting, with the magnification of 400 diameters customarily employed by him in his investigation of these minute organisms, a tolerably fair appreciation of its form and structure. No details are appended as to the special conditions or circumstances under which it was encountered, but it would seem not altogether improbable that it represents the motile form of the trimastigate type *Spumella vivipara*.

Monas ovata, From.

Body oval, widest posteriorly; transparent, with yellow granulations towards the posterior extremity; the anterior end pointed and hyaline; flagellum long, slender, and undulating. Length 1-2000".

HAB.—Fresh water.

Doubtful Species.

The *Monas crepusculum* of Müller and Ehrenberg, represented by minute spherical points only, under a magnification of 800 diameters, and the *M. punctum* and *pulvisculus* of the same authorities, figured in De Fromentel’s recent work,* cannot be admitted as independent species, being indistinguishable from the early germinating conditions of numerous other larger animalcules. ‘The following species of the older writers, reproduced by Pritchard,† are in most instances too ill-defined for future identification, but may be added to complete the list: —

* M. erubescens*, Ehr., spherical, rose-coloured; motion slow and continuous; diameter 1-1728". HAB.—Salt water.

* M. enchelys*, Ehr., colourless; motion slow, continuous. In marsh water. 1-1200" to 1-960".

* M. umbra*, Ehr., ovate, colourless; motion rapid. Among fresh Confervæ. 1-2400".

* M. hyalina*, ovate, colourless; active, seems to leap or jump. In stale water. 1-6000" to 1-2880".

* M. gliscens*, ovate, colourless; motion gliding. In infusions of stinging-nettle. 1-4500".

* M. cylindrica*, solitary, elongate, colourless; motion revolving. In salt water. 1-1150".

* M. Okeni*, elongate, red; motion revolving, vibratory; social. In running water. 1-2300".

* M. socialis*, conical, colourless; social. In water-butts. 1-700".

* De Fromentel, ‘Études sur les Microzoaires,’ Paris, 1876.
GENUS CYATHOMONAS.

M. simplex, spindle-shaped, colourless; motion gliding or rotatory. In water of the Nile and at Berlin. 1-1720".

M. inanis, fusiform, colourless; motion vacillating. In stagnant and foul water. 1-3600".

M scintillans, fusiform; very active, motion vacillating. Among fresh-water Coniferæ. 1-6000" to 1-4600".

M. Dumalii (described by Dujardin as possessing two flagella, and therefore referable to the Dimastigous group), of a deep red colour; in vast numbers in the salt-marsh water of the Mediterranean, to which they give a deep blood-colour.

M. prodigiosa, a minute red monad, producing the blood-like spots occasionally appearing in bread and other farinaceous substances. (Cohn asserts this organism to be a Vibrio, and not a Monas.)

M. astasioides, Pty., of variable form, often with one or two longitudinal lines and a central vacuole. 1-1340".

M. piscatorum, irregularly oval, pointed anteriorly; colourless; flagellum short, scarcely 1½ times the length of the body; movements sluggish. 1-1400".

M. succissa, oval; usually truncate, rarely pointed behind; colourless, with large vacuoles; flagellum twice the length of the body; movement active and revolving. In fresh pond water. 1-1800".

M. cordata, cordate as seen on one side, oval and truncate on another, rounded anteriorly, hyaline or granulate; swims fast, with an oscillating motion, seldom revolving; flagellum difficult to discern, more than double the length of the body. In pond water. 1-1140" to 1-1080".

M. ureolaris, small, ureolate, obliquely emarginate in front; colourless; flagellum indicated only by movement produced in the water; motion slow. In running streams. 1-2640".

The Monas excavata of Perty, having two filaments, is not referable to this present genus, and the M. rotulus, farcimen, and hilda of the same authority are most probably the zoospores of Palmellaceæ or higher Algae.

GENUS II. SCYTOMONAS, Stein.

Animalcules free-swimming, ovate, persistent in form, having a simple terminal flagellum; no distinct oral aperture.

This genus represented by a single minute species, figured but not yet described at length by Stein, differs from Monas only in its persistent shape and accompanying greater rigidity of the peripheral or ectoplasmic layer.

Scytomonas pusilla, Stein. Pl. XIII. Figs. 41 and 42.

Body elongate-ovate or pyriform, narrowest anteriorly, about twice as long as broad; flagellum equalling or slightly exceeding the length of the body; contractile vesicle single, situated a little in advance of the centre of the body. Length 1-1600".

Hab.—Fresh water. Dividing by longitudinal fission.

GENUS III. CYATHOMONAS, De Fromentel.

Animalcules free-swimming, ovate or cylindrical; abruptly truncate or excavate at the anterior margin; a single long flexible flagellum projecting from the centre of this truncate area; contractile vesicle usually conspicuous; increasing by longitudinal fission; no distinct oral aperture.

The genus Cyathomonas has been instituted by De Fromentel (‘Microzoaires,' 1876) for the reception of certain flagellate types, differing from Monas only in the
abruptly truncate or excavate contour of the frontal border. No details respecting
the mode of inception of food are recorded, and, in the absence of all evidence as
to the existence of a distinct mouth, it appears desirable to retain the genus among
those forms most closely allied to it structurally, in which food-particles are known
to be ingested at all points of the periphery. The several species described are
very briefly characterized, the descriptions and accompanying drawings being the
result of an examination with a magnifying power of 400 diameters only, which is
altogether insufficient for the full and exhaustive investigation of these minute
beings.

Cyathomonas turbinata, From.

Body elongate, turbinate, about twice as long as broad; the posterior
extremity pointed, the anterior border truncate; flagellum somewhat short,
not exceeding the length of the body; parenchyma transparent, granulate;
dividing by longitudinal fission. Length 1-1200". HAB.—Fresh water.

Cyathomonas spissa, From. Pl. XIII. Figs. 46 and 47.

Body elongate-ovate, or subcylindrical, about twice as long as broad,
pointed posteriorly, widest in the centre, and slightly narrowing again at
the truncate anterior margin; flagellum short; contractile vesicle situated
laterally in the anterior third of the body; parenchyma granular; dividing
by longitudinal fission. Length of body 1-2000". HAB.—Fresh water.

The difference between this form and **Cyathomonas turbinata**, From., appears to
be too slight for specific separation. The figures given closely correspond with one
another, the contractile vesicle indicated in the present variety affording, indeed, the
only mark of distinction.

Cyathomonas viridis, From.

Body subcylindrical, about twice as long as broad, rounded posteriorly,
the anterior border truncate; flagellum long and slender; parenchyma
green, and granulate. Length 1-2000". HAB.—Fresh water.

Cyathomonas alba, From.

Size and contour identical with that of *C. viridis*, but the parenchyma
hyaline and less granular. This and the preceding form are evidently
varieties only of one species.

Cyathomonas lychnus, From.

Body hemispherical, truncate anteriorly; posterior and peripheral
portion coloured green, the anterior border hyaline; flagellum long and
slender. Diameter 1-3000". HAB.—Fresh water.

Cyathomonas turbo, From. Pl. XIII. Fig. 48.

Body top-shaped, tapering and pointed posteriorly, the anterior border
truncate; flagellum very long and undulating, three or four times
the length of the body; parenchyma granulate; contractile vesicle antero-
lateral. Length of body 1-1600". HAB.—Fresh water.
GENUS LEPTOMONAS.

Cyathomonas emarginata, From.

Body elongate, subcylindrical, slightly tapering posteriorly, the anterior border truncate, notched or emarginate on one side; flagellum long and slender, nearly twice the length of the body; parenchyma clear yellow, with red granules interspersed; contractile vesicle conspicuous, situated in the posterior third of the body. Length of body 1–1000". HAB.—Fresh water.

Cyathomonas elongata, From.

Body elongate, about two and a half times as long as broad, tapering posteriorly, slightly constricted immediately behind the truncate anterior border; flagellum long and slender; parenchyma clear yellow, enclosing a few red granules; contractile vesicle situated in the posterior third of the body. Length 1800". HAB.—Fresh water.

The distinction between this and the preceding type is apparently insufficient for their specific separation.

GENUS IV. LEPTOMONAS, S. K.

(Greek, leptos, slender; monas.)

Animalcules free-swimming, persistent in shape, elongate fusiform or aciculate, bearing a single long undulating flagellum at the anterior extremity; no distinct oral aperture yet detected.

The above generic title combined with the following specific one is here introduced for the reception of the monoflagellate animalcule figured and briefly described, without any name, by O. Bütschli in the 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xxx. Hft. ii., for January 1878. While corresponding with the ordinary representatives of the genus Monas in its simple monoflagellate type of structure, it is to be distinguished from them by its persistent aciculur form. From what little is at present known of it, it is almost impossible to decide whether this organism possesses a sound claim to the separate generic distinction here accorded it, or whether it is not the developmental phase of some other flagellate species. It was originally proposed to employ the generic title of Rhaphimonas—with reference to its acicular contour—for the distinction of this specific form. The contemporary adoption of the almost identical one of Raphidomonas by Stein, in connection with the Monas semen of Ehrenberg, has, however, made it desirable to substitute a new name for the present form. By accident, the previously selected title has been employed by the author in an article on parasitic Infusoria contributed to the 'Popular Science Review' for October 1880.

Body elongate fusiform, pointed at each extremity, but most attenuate posteriorly, eight or nine times as long as broad; flagellum nearly twice the length of the body; a contractile vesicle situated at a short distance from the anterior extremity, and a little behind this a dark, granular, nucleus-like body. Length 1–2250". HAB.—Parasitic, within the intestinal tract of the Nematozoon Trilobus gracilis.
This species was found by Bütschli in considerable quantities in the intestinal tract of the above-named host; some freely detached, and others united to one another in clusters by their posterior extremities. Their movements when liberated into the surrounding water, were swift and vigorous.

Genus V. OPHIDOMONAS, Ehr.

Animalcules free-swimming, very elongate, thread-like or vermicular, persistent in shape but more or less spirally curved; a single flagellum at the anterior extremity; parenchyma usually enclosing numerous refringent corpuscles.

The single species referred to this genus by Ehrenberg in his 'Infusionsthiere,' under the title of *Ophidomonas jenensis*, but without any accompanying illustration, was represented as a loricated animalcule. In a more recent publication, however,* he gives an illustration of both this and a second presumed form of the same genus, *O. sanguinea*, which by no means supports such an interpretation. The close correspondence in general contour of the members of this genus with those of *Vibrio* or *Spirillum* is at first sight very striking; the larger size and presence of a flagellum at the anterior extremity only of the thread-like body in the case of *C. jenensis*, afford, nevertheless, substantial marks of distinction. The motions of these organisms in the living state are furthermore entirely distinct from those of *Spirillum* and its allies, the body being drawn through the water after the manner of the ordinary Flagellata by the vibrations of the single anterior flagellum, while with the *Spirilla* the posterior flagellum represents the organs of locomotion, and propels the body in advance. The existence of an endoplasmic or contractile vesicular system remains to be demonstrated, as also whether or not solid food-particles can be ingested.

Ophidomonas jenensis, Ehr. Pl. XIII. Figs. 27 and 28.

Body elongate, vermicular, obtusely rounded at each extremity, more or less, spirally twisted; about one-twelfth as broad as long; flagellum undulating, nearly equalling one-half of the body in length; colour olive-brown, enclosing one or more rows of clear refringent corpuscles. Length 1–570". HAB.—Spring water. Increasing by transverse fission.

Ophidomonas sanguinea, Ehr.

Body very long, slender, and flexible; about twenty-four times as long as broad; parenchyma usually transparent, and enclosing minute brilliant crimson corpuscles, sometimes suffused with a paler tint of the same colour. Length 1–570". HAB.—Pond and brackish water.

Although reported by Ehrenberg as an inhabitant of brackish water, examples according in all essential points with the type of this species, as figured by that authority, have been obtained by the author in pond water. Such personal acquaintance with it has, however, given rise to the opinion that this organism is in no way related to the preceding form, but represents rather the filamentous condition of a *Spirillum* closely, if not absolutely, identical with the organism figured and described by Messrs. P. Geddes and J. Ewart in the 'Proceedings of the Royal Society,' p. 482, pl. xi. fig. 4, 1878. No flagellate appendages could be discovered with the comparatively low magnifying power then at disposal, and its movements

* 'Abhandl. Berlin Akad.,' 1862.
as observed were more repert than natatory, being chiefly confined to worm-like writhings among the vegetable debris in which it was discovered. All the specimens met with by the author possessed the perfectly transparent parenchyma with the enclosed brilliant crimson corpuscules distinctive of the species. The form figured and referred to this type by Cohn (reproduced by T. Jeffrey Bell, 'Quart. Jour. Mic. Sc.;' pl. xx., 1876) is altogether distinct, and an undoubted Vibrio with a long flagellum at each extremity. A far greater likeness exists, on the other hand, between Ehrenberg's original drawings of Ophidomonas sanguinea and the "linear filaments of Bacterium rubescens," figured by Professor E. Ray Lankester in a subsequent number of the same journal.

GENUS VI. HERPETOMONAS, S. K.

(Greek, herpeton, snake; monas.)

Animalcules free-swimming, elongate or vermicular, highly flexible; the posterior extremity often the most attenuate, but not constituting a distinct caudal appendage; flagellum single, terminal; contractile vesicle usually conspicuous. Habits mostly endoparasitic.

This new genus is instituted for the reception of the form figured by Stein, 'Infusionsthiere,' Abth. iii., 1878, under the title of Cercomonas musca-domestica, and identified by that authority with the Bodo musca-domestica of Burnett and the Cercomonas muscarum of Leidy. The entire absence of a distinct caudal filament serves, however, at once to distinguish it from the typical representatives of either of the two last-named genera, and approaches it the more nearly to Leptomonas or Ophidomonas. A second minute form recently discovered by Mr. T. R. Lewis in the blood of rats is provisionally referred to this generic group.

Herpetomonas musca-domestica, Burnett sp. Pl. XIII. Figs. 29-34.

Body vermicular, highly flexible and polymorphic, usually thickest centrally and tapering to a sharp point at each extremity, from ten to twenty times as long as broad; flagellum equalling or slightly exceeding the body in length, thick at its base and becoming gradually more attenuate towards the distal end; parenchyma granular; contractile vesicle single, located near the anterior extremity; endoplast inconspicuous. Length 1-650" to 1-430".

HAB.—Intestine of common house-fly, Musca domestica.

The synonyms of this species have been recorded in the preceding diagnosis of the genus. According to the recent figures, with their descriptive indices given by Stein, a more marked flexibility of the body, permitting the animalcule to assume various snake-like and other contorted shapes, is especially characteristic of the younger and smaller zooids.

Herpetomonas Lewisi, S. K. Pl. XIII. Figs. 35-40.

Animalcules exceedingly minute, attenuate and vermicular under normal conditions, but highly polymorphic and capable of assuming a variety of contours; flagellum single, terminal, two or three times the length of the extended body; no contractile vesicle, endoplast, or other internal differentiation as yet detected. Length 1-1500".

HAB.—The blood of Indian rats.
The circumstances under which the animalcules distinguished by the foregoing title were first discovered by Mr. T. Richards Lewis, are so graphically described by himself in the ‘Quarterly Journal of Microscopical Science’ for January 1879, that an abstract in extenso from that serial is herewith submitted. Having been directed by the Indian Government to prosecute inquiries respecting the Spirillum of Bombay fever, he remarks:—"Whilst doing this I had occasion to examine the blood of a considerable number of animals, and eventually (July 1877) detected organisms in the blood of a rat, which at first sight I took to be of the nature either of vibrions or spirilla. The blood, when transferred to the microscope, appeared to quiver with life, but for some considerable time nothing could be detected to account for this animated condition, as the blood-corpuscles were somewhat closely packed. On diluting the blood with a half per cent. solution of salt, motile filaments could be seen rushing through the serum and tossing the blood-corpuscles about in all directions. Their movements were of a more undulatory character than are the movements of spirilla, and the filaments were thicker, and more of a vibronic aspect. They were pale, translucent beings, without any trace of visible structure or granularity; but as their movements were so rapid, exact information as to their microscopical characters could not be ascertained at the time. The slides were, therefore, placed under a bell-glass until these should diminish.

"On the following morning the activity of the filaments was much less. Their movements were more restricted and more undulatory in character, and the blood-corpuscles, having become somewhat agglutinated, had apparently squeezed out the organisms, so that the latter occupied the serum-areas of the preparations. After watching their movements for some time under a Hartnack’s No. 9 immersion objective, it was observed that every now and then blood-corpuscles, some considerably distant from any visible motile filament, would suddenly quiver. On carefully arranging the light it was eventually observed that this movement was due to the existence of a very long and exceedingly fine flagellum, apparently a posterior flagellum, as the organisms seemed generally to move with the thinner end forwards, the flagellum being seen following it, and lashing the fluid during the moment it remained in focus. I have not been able to detect any flagellum at the opposite end. They may sometimes be kept alive for two or three days, but generally the greater portion will have died within twelve or twenty-four hours; and not only have died, but also disappeared from view.

"When very carefully watched, the plasma constituting the thicker portion of their substance may be seen suddenly to swell out at certain places, sometimes so as to divide the ‘body’ into two parts; at other times two or three such constrictions and dilatations may be detected, the dilatations being possibly observable only on one side. At other times they assume an arrow-shaped aspect; occasionally something like granularity may be observed before their disappearance, but not a trace of them is left after their disintegration. It seems as though they had been dissolved in the serum in which they were found. I have examined the blood of a great number of rats for the purpose of ascertaining what proportion of them contains these organisms in their blood, and find that of those specially examined for this purpose, their existence was demonstrated in 29 per cent. Sometimes, however, the number detected were very few, not more than one or two in a slide, but in the greater number of cases they were very numerous, every slide containing several hundreds."

Mr. Lewis further remarks that the nearest approach to a description of these haematozoa met with by him is contained in O. F. Biitschli’s account of a flagellate parasite obtained from the intestinal canal of the free nematode Trilobus gracilis.* He also gives quotations from Dr. Bastian’s ‘Beginnings of Life,’ where, on the authority of Dr. Gros, minute worms or ‘vermicules’ are recorded to have been observed in the blood of a field-mouse in such numbers as to cause the blood to present an animated aspect, as also that the blood of the mole has been found to exhibit a similar phenomenon. It is a remarkable circumstance that the rats

* This form has been previously figured and described under the title of Leptomonas Biutschlii.
affected with these minute parasites occupied a restricted portion only of the premises on which they were first discovered. One point especially worthy of remark, as recorded by Mr. Lewis, has reference to the position of the flagellum. If, as he is inclined to maintain, this organ is produced from the posterior extremity, and propels instead of draws the animalcule through the inhabited serum, we have presented a structural and functional feature without parallel among the other representatives of these Protoco flagellata, the recognition of which would demand the creation of a distinct generic and family group for the reception of these singular organisms. The correspondence of these animalcules, this last-named interpretation of the flagellum being correct, with the spermatozoa or male genetic elements of ordinary Metazoic animals, is most remarkable, and not unnaturally affords a foundation for the suggestion that further investigation may possibly demonstrate their identity with the discharged spermatic elements of the minute Nematodes, Micro-filariae, or other Metazoic endoparasitic forms known to flourish amid the same surroundings.

GENUS VII. ANCYROMONAS, S. K.

(Greek, ancyra, anchor; monas.)

Animalcules ovate or elongate, free-swimming or adherent at will; flagellum single, trailing, adhesive or anchorate at its distal extremity, vibratile throughout the remainder of its length; endoplasm and contractile vesicle conspicuous.

The single type referred to this genus is of much interest, it combining in its single trailing filament the functions of both the trailing and vibratile flagella of such genera as Heteromita or Anisonema. It is further remarkable as corresponding in its mature form with the earlier or larval condition of the representatives of these two last-named generic types, in the former of which more especially (see Heteromita rostrata and H. uncinata) it has been demonstrated by Messrs. Dallinger and Drysdale that the trailing or anchorate flagellum is the first to make its appearance, and continues for a while the sole organ of locomotion.

Anryromonas sigmoides, S. K. Pl. XIII. Figs. 49-53.

Body persistent in form, gibbously ovate or sigmoidal, about three times as long as broad, the anterior extremity pointed and recurved ventrally, the posterior one sometimes rounded, but more often shortly pointed and slightly recurved in an opposite direction; flagellum continuous with the recurved anterior extremity, reflected backwards or ventrally, about twice the length of the body, the distal extremity adhesive or anchorate, the remaining portion vibratile or undulating; endoplasm spherical, subcentral; contractile vesicle situated close to the anterior extremity. Length 1-5000" to 1-4000".

HAB.—Salt water, among decaying Fucus. Increasing by oblique fission and by encystment and breaking up of the body into spores.

This species was obtained at St. Heliers, Jersey, in September 1878, in vast quantities, among a mucilaginous exudation from fronds of the seaweed Fucus siligusa that had been macerated in sea-water for the space of one week. As first seen with a magnification of 800 diameters only, the author was inclined to anticipate that the long, reflected and adherent flagellum was only one of two flagellate appendages, and that another finer vibratile one was stationed at the anterior extremity which would thus identify the animalcule with the typical representatives of the genus.
ORDER FLAGELLATA-PANTOSTOMATA.

Heteromita. A more careful investigation, however, aided by the employment of a \(\frac{1}{2}\) inch objective with a magnification of from 2500 to 5000 diameters, conclusively demonstrated that no other flagellate appendage existed, and that the single one present fulfilled in a remarkable manner the functions performed in *Heteromita* by two such organs. In the free-swimming animalcules, which were less numerous than the adherent ones, progression was effected in a straight line, accompanied by an oscillating motion, the single flagellum trailing in the rear like the posterior one of *Heteromita*, but slowly undulating throughout its length, and accomplishing by its vibrations the advancement made. In the temporarily adherent forms, fixed to the glass object-carrier or fragments of vegetable debris by the adhesive extremity of the same flagellum, a similar undulating action of the remaining length of this organ was apparent, this undulating action causing the entire organism to oscillate slowly up and down (see Pl. XIII. Fig. 50), and inducing at the same time a current to set in towards the animalcule's body. Viewed in profile, the motile flagellum seen just beneath the ventral surface of the body, presented at times an appearance closely corresponding with that of a minute undulating membrane; the body, however, in the next minute tilting away from the flagellum, exhibited its true nature. The phenomena attending the process of fission in this species were further observed to be somewhat abnormal. This takes place obliquely, the first indication of the impending process being a lengthening out of the body, accompanied by the greater prolongation of the more or less pointed posterior extremity until it attains a curvature, though in a reversed direction, corresponding with that of the anterior end, and develops at its apex a flagellum similar in all ways to the anterior one originally possessed. No trace of segmentation, however, has as yet made its appearance, and the animalcule remains riding at anchor or floats through the water, presenting (as shown at Pl. XIII. Fig. 51) a symmetrically sigmoideal contour closely identical with that of *Trepomonas agilis*, as seen from a lateral point of view (see Pl. XIX. Fig. 11), the two similar flagella divergent from each recurved point assisting to complete this likeness. Presently a faint oblique line makes its appearance, extending from above the median point of the dorsal surface of the original animalcule, downwards and backwards to behind the median point of the ventral region. This faint line gradually increases in the clearness of its delineation, and soon assumes the aspect of a distinct groove, which gradually deepens until the anterior and posterior halves become separated from one another as two precisely similar and indistinguishable units. Both bear the characteristic reflected flagellum, and likewise the central endoplasm and antero-terminal contractile vesicle, these respective structures having also made their appearance previous to the commencement of the fissive process, the former by the segmentation of the original endoplasm, and the latter by independent development. The encystment of zooids which previously exhibited an irregular amoeboid phase, and the subdivision of these into eight or sixteen macospores, giving rise to animalcules similar in shape to, but of much smaller size than the adults, have been observed, but not as yet the coalescence or genetic union of two or more units, and the breaking up of their united masses into more minute and abundant microspores.

Fam. II. PLEUROMONADIDÆ, S. K.

Animalcules naked or illoricate, entirely free-swimming, flagellum single, lateral or ventral; no distinct oral aperture.

Genus I. PLEUROMONAS, Perty.

Animalcules free-swimming, kidney-shaped, bearing a single vibratile flagellum which projects from the centre of the concave ventral side; no distinct oral aperture.
Monadiform beings, coinciding in form with the representatives of the genus *Pleuromonas*, as formulated by Max Perty, have been met by the author on several occasions. Seeing, however, that similar forms represent the earlier or larval conditions of other Flagellate organisms, such as *Salpingeozos fusiformis* and *Anthophysa vegetans*, the present retention of this genus must be regarded as entirely provisional. It is, further, by no means improbable that the type *P. jaculans*, upon which the genus has been founded, is identical with the *Heteronema* (Bodo) saltans of Ehrenberg, and which, in addition to exhibiting similar leaping movements, appears under insufficient magnifying power to possess a single flagellum only.

Pleuromonas jaculans, Pty. Pl. XIII. Figs. 43 AND 44.

Body kidney-shaped, colourless, slightly granulate; flagellum about three times the length of the body. Movements eccentric, jerking and leaping. Length 1-6000" to 1-3160". HAB.—Stale water and infusions.

The *Pleuromonas granulosa* of De Fromentel thus characterized:—Body ovoid, granular, rounded posteriorly, the anterior extremity attenuate, sharply recurved; flagellum proceeding from the apex of the anterior extremity, and often folded between the recurved portion and the body; parenchyma granulate; contractile vesicles two in number, posteriorly situated. Length 1-800"—cannot be generally associated with *P. jaculans*, and would seem to either represent the type of a new genus, or possibly an imperfectly observed *Heteromita*.

Genus II. MERO TRICHA, Mereschkowski.

Animalcules free-swimming, persistent in form, more or less ovate; flagellum single, issuing from a pit-like depression of the ventral surface; parenchyma enclosing trichocyst-like corpuscles. HAB.—Fresh water.

Merotricha bacillata, Mereschk. Pl. XIII. Fig. 45.

Body evenly ovate or elliptical, one and a half times as long as broad; ventral depression with associated flagellum situated at a short distance from the anterior extremity; a sheaf-shaped fascicle of rod-like trichocysts occupying a median position at the anterior extremity; cuticular surface entirely smooth; endoplasm coloured green; contractile vesicle situated immediately behind the fascicle of trichocysts. Dimensions unrecorded.

HAB.—Fresh water: Lake Onega, Mereschkowski.

This species, described by C. von Mereschkowski, in company with many newly discovered Protozoic types,* is of special interest, it representing one of the very few Flagellate animalcules in which the presence of trichocysts has been recorded.

Fam. III. CER COMONADIDÆ, S. K.

Animalcules naked, free-swimming or adherent, provided with a permanent or temporarily developed caudal filament; vibratile flagellum single, terminal; no distinct oral aperture.

Genus I. OIKOMONAS, S. K.

(Greek, *eoika*, resembling; *monas*)

Animalcules exceedingly minute, plastic and unstable in form, ovate, globular, or elongate, sometimes free-swimming and sometimes attached by a temporarily developed thread-like prolongation of the posterior extremity of the body; flagellum single, anteriorly located, subservient when swimming to the purpose of locomotion and in the attached condition to bringing food-particles within reach, these incepted at any portion of the periphery; contractile vesicle and endoplast usually conspicuous.

Hab.—Fresh and salt water, abundant in infusions.

This new generic title is introduced for the reception of all those uniflagellate species that correspond precisely in their free-swimming state with those of the preceding genus *Monas*, but which possess in addition the faculty of attaching themselves at will to foreign bodies through the medium of a thread-like extension of the sarcod of the posterior end of the body. Preferring again to pursue a nomadic life, this extemporized pedicle is withdrawn into the substance of the parenchyma, and the animalcules swim away under conditions and appearances identical with those presented during their previous wandering state. As a necessary consequence, an acquaintance with some duration is in most instances absolutely requisite for the precise determination as to which of the two genera, *Monas* or *Oikomonas*, certain animalcules should be referred. In their more typical fixed or stalked condition the identification of the representatives of the last-named genus presents no difficulty; but the same zooid, as hereafter shown, sometimes exhibits in its nomadic state an aspect so entirely divergent from the fixed one, that unless the passage from the one to the other has been actually witnessed, their specific relationship would not so much as be suspected. With the typical form *Oikomonas mutabilis*, here introduced, has naturally to be included the *Monas termo* of Professor H. James-Clark, recently demonstrated by that authority * to possess a stalked as well as a free-swimming condition. The possession of a single flagellum only instead of one long and one or two shorter ones, serves to distinguish *Oikomonas* respectively from the two genera *Physomonas* and *Spumella*.

Oikomonas mutabilis, S. K. Pl. XIII. Figs. 55–64.

Body plastic and variable in form—in the attached condition—symmetrically ovate, pyriform, or subspherical, seated on a slender pedicle about equal to the body in length—in the free-swimming condition—changing from spherical or ovate to an elongate contour, about three times as long as broad, with a rounded and wider posterior extremity, a slightly constricted central portion, and a bluntly pointed and somewhat truncate anterior border; flagellum long and slender, inserted at the apical extremity, when swimming held arcuately and apparently rigidly in advance; parenchyma colourless, more or less granular, enclosing anteriorly a spherical endoplast, and posteriorly two contractile vesicles. Dimensions of subspherical attached body 1–1500"; length of elongate free-swimming zooids 1–750".

Hab.—Vegetable infusions in fresh water; gregarious; motion in the water straight and even.

This species has been obtained abundantly in a maceration of hay in spring water, in which at times it absolutely swarmed. The relationship of the elongate free-swimming zooids to the sedentary ovate or subspheroidal ones, was not for a long while determined, the former being indeed chronicled in the author's note-book as elongate nomadic monads, most nearly resembling the Monas constricta of Dujardin, and representing probably an early and monoflagellate condition only of the species described later on under the name of Sterromonas formicina. The identity of the two was demonstrated while examining a group of stalked individuals that had become isolated within a small space in the glass slide, through the gradual evaporation of the water. As this space became still more limited by the encroachment of air the animalcules apparently took alarm. Detaching themselves, the pedicle contracted and disappeared within the posterior protoplasmic substance, the body became at once less broadly ovate, and assumed within a few seconds the elongate contour, with a slightly constricted central region identical with the free-swimming types before observed. In this elongate form the monads swim round and round the confines of the liquid space, now less than the diameter of the field of the 16-inch objective, vainly seeking a pathway for escape, and were ultimately dried up. This identity of the locomotive and fixed forms being once discovered, the further verification of the fact proved a comparatively easy task, the transformation being observed not only of the fixed to the free-swimming type, but that also of the latter to the sedentary one. In this instance the animalcule became attached by an irregularly-shaped mucilaginous extension of the posterior extremity, which gradually assumed a slender and thread-like aspect accompanied by a shortening and thickening of the outline of the body. The rigid extension of the flagellum in both the attached and motile phases of this species imparts to it, in the latter instance, a stiffness of motion in the water, corresponding closely with that of Sterromonas, with which it was at first supposed to be identical. This apparent stiffness is shown by the application of reagents, or when the animalcules become exhausted through the want of oxygen, to be a mere optical aspect, the rotation of the distal end of the flagellum being then conspicuous, while the whole organ as death approaches loses its seeming rigidity, and becoming flexible, feebly undulates throughout its length. Reproduction by the longitudinal fission of detached ovate examples of this species, accompanied by a division of the conspicuous spherical endoplasm, has been noticed, as also the encystment and the breaking up of the encysted zooids into spore-like bodies. Young individuals of elongate, conical outline, with a truncate anterior end and rigidly projecting flagellum, which exhibited a similar stiff comportment during natation, occurred abundantly among the adult animalcules. The smaller of these immature forms measured about one quarter only of the length of the full-grown specimens, every gradation in size from the one to the other being traceable. The ingestion of food during the sedentary condition at different points of the periphery was frequently observed.

Oikomonas termo, J.-Clk. sp. Pt. XIII. Figs. 78-80.

Body ovate or subspherical, somewhat compressed, rounded posteriorly, free-swimming, or attached by a thread-like pedicle of variable length; the anterior margin notched or emarginate and exhibiting a projecting lip-like angle; flagellum springing from the notch produced by the lip-like prominence extended rigidly in advance and slightly curved, about twice the length of the body; parenchyma colourless, more or less granular; contractile vesicle posteriorly located; endoplasm spherical, subcentral. Length of body 1-5000" to 1-3000". HAB.—Fresh water and vegetable infusions.

This species, regarded by Professor H. James-Clark (L. c. p. 306) as probably identical with the Monas termo of Müller and Ehrenberg, is referred by O. Bütschli
to the genus *Spumella* of Cienkowski. The absence, however, of the two shorter flagella at once demonstrates the necessity of their generic separation.

It is in connection with this form that Professor James-Clark has sought to demonstrate the existence of a distinct mouth, which, in consequence of his having witnessed the entrance of food at this spot on many occasions, he maintained to be situated between the base of the flagellum and the lip-like prominence. O. Bützchli again has more recently advocated the recognition of the lip-like prominence as the recipient of the food-substances that are thrown backwards against the body by the vibratile action of the flagellum. On repeated occasions, however, the author has satisfied himself that the digestive area has no such restricted limits, but that it is distributed throughout the entire peripheral surface, from any point of which, if a food-particle strikes it, a film of sarcod follows out to seize it. It is at the same time requisite to observe that in the majority of instances these particles are thrown back with such precision as to fall upon the lip-like prominence or other portion of the anterior border, a prolonged observation of the same animalcule being usually requisite for the detection of those more exceptional instances in which it impinges upon, and is engulphed by, the lateral or posterior region. The contractile vesicle and endoplasm in this species, in accordance with Bützchli's observations, lay close by side of one another towards the anterior border of the body. Professor James-Clark, however, gives a more posterior location to the last-named structure, a similar position being distinctive of the examples observed and here figured by the author. When swimming, this species glides along smoothly in a straightforward direction, propelled by the whirling motion of the distal extremity of the flagellum, which otherwise presents that rigid arcuate aspect which characterizes the fixed condition; the body varies to no appreciable extent in this locomotive form from the more typical sedentary phase. The *Monas neglecta* of James-Clark, separated from *M. (Oikomonas) termo* by that authority on account of the more active pulsation and slightly more anterior location of the contractile vesicle, and by the greater length and more sigmoid flexure of the anterior flagellum, but agreeing in all other essential details with the present species, while referable to the genus *Oikomonas*, appears to possess almost too slender a claim for independent specific recognition.

Oikomonas obliquus, S. K. Pl. XIII. Fig. 72.

Body subspherical, rounded posteriorly, with a strongly developed conical anterior lip-like prominence; flagellum about three times the length of the body, projecting from the notch produced by the abrupt rising of the anterior lip, rigid and slightly arcuate, deflected at an angle of about 45° from the perpendicular axis of the body; pedicle slender, about equal to the body in length; parenchyma very clear and transparent. Greatest length 1-7500". HAB.—Pond water.

Although somewhat resembling *Oikomonas termo*, this species may be readily distinguishable from that form by its exceedingly minute size and the remarkably oblique flexure of the flagellum. This organ in both the latter and preceding type is continuous at its base with the axial line of the body, but becomes slightly curved in the distal portion of its course; here, however, we find it bent aside from its point of origin at an angle of no less than forty-five degrees. In connection with this species a remarkable phenomenon was observed relating to the inspective capacities and subsequent method of getting rid of effete and unassimilated food-particles. Finely pulverized carmine was voraciously swallowed by the monads, and in many instances in such a quantity that the entire parenchyma became filled with small spherical aggregations of this pigment, leaving no space for further importations. It was now determined to ascertain in what manner the indigestible portions would be disposed of; this after a little patient waiting was fully revealed. Piece by piece these effete rejectamenta were released from the
posterior extremity of the body close to its juncture with the pedicle, and falling to the ground, formed around the base of this structure a small heap, which at the end of half an hour—the little monad still continuing to incept fresh particles—had accumulated to dimensions equal to and in some cases larger than its own body. The possession by this species of a definite excretory area, not sufficiently limited to be called an aperture, was thus demonstrated, and is of interest, with relation to the somewhat similar but more highly complex excretory phenomena exhibited by the compound type Anthophysa vegetans hereafter described.

Oikomonas Steinii, S. K. sp. Pl. XIII. Figs. 65–70.

Body in its motile condition very variable, spheroidal, ovate or elongate, in the sedentary state more or less regularly pyriform and attached by the tapering posterior extremity, which is not sufficiently prolonged as to constitute a distinct pedicle; flagellum undulating, not extended rigidly or in an arcuate form, equalling the body in length; contractile vesicle single, subcentral, endoplasm posteriorly located. Length 1–1500".

HAB.—Vegetable infusions.

The above title is here proposed for the form figured by Stein in his recently published volume under the name of Ceromonas termo, and presumed to be identical with the Monas termo of Müller and Ehrenberg. It being, however, entirely separate from the type previously connected with that title by Professor Clark, it becomes incumbent to introduce a new one for its distinction. Whether or not the present form or Professor Clark's species represents precisely the animalcule upon which Müller and Ehrenberg conferred the particular title of Monas termo, it is next to impossible to determine, there being, in addition to these, a whole host of monadiform beings that present, under a similar comparatively low magnifying power, an aspect identical with that reported by the earlier authorities of the type in question. The new species next described, exhibits, in both habits and external form, broad general features that, without the employment of a high objective, entirely coincide with those of the present species, and is, therefore, quite as probably identical with the Müllerian or Ehrenbergian type.

Oikomonas Steini is, according to Stein's illustrations here reproduced, eminently social, assembling in clusters upon the surface of the Bacteria-films or vegetable debris contained in the infusions that give it birth. One of the altogether irregular contours that may be assumed at will by the adult zooids of this species is represented at Pl. XIII. Fig. 67. In their younger and more minute condition they present, as shown at Figs. 69 and 70, a much more regular ovate contour, the posterior extremity being sometimes acutely pointed. Stein's proposed reference of this type to the genus Ceromonas is, however, by no means justified, no structure taking the form of a permanent tail-like appendage being exhibited in any of his accompanying figures.

Oikomonas rostratum, S. K. Pl. XIII. Figs. 73–77.

Body evenly ovate or pyriform in its free-swimming condition; gibbously ovate with a wider central region in the attached state, the anterior extremity usually rostrate and curved ventrally, the posterior one attached immediately to the object of support, or so attenuated as to form a more or less distinct pedicle, this pedicle never exceeding and rarely equalling the entire length of the animalcule's body; flagellum extended obliquely and rigidly from the curved anterior end, equalling the body in length;
contractile vesicles two in number, subcentral; endoplast posteriorly located. Length 1-2000" to 1-1500".

HAB.—Hay infusions in both salt and fresh water.

While agreeing considerably, both in general habits and external contour, as seen under moderate amplification, with *O. Steinti*, last described, this species may be readily distinguished from that type, on closer examination, by the recurved and rostrate form of the anterior extremity, the rigid and arcuate flexure of the flagellum, the presence of two contractile vesicles, and the frequent though not invariable development of a more or less distinct pedicle. The type was obtained by the author in equal abundance in hay infusions in both salt and fresh water, experimented with in the months of January and February, at St. Heliers, Jersey, in the year 1879. Examples in the latter medium appeared at the end of the first, while those in the salt water were not observed until the end of the second week. When crowded together in their attached state on the finer vegetable fibres and other debris, with their bodies swaying to and fro and their anterior beak-like extremities and flagella maintained in an active condition of elevation and depression, they present (as shown at Pl. XIII. Fig. 73) a most grotesque resemblance to a group of little birds bowing and chattering to one another. Figures 74 and 76 of the same plate indicate the very considerable latitude of motion which the rostrum and accompanying flagellum possesses. The ingestion of solid food-particles at various points of the periphery was observed on numerous occasions, as also the formation by these animalcules of smooth spheroidal encystments.

Oikomonas quadratum, S. K. Pl. XIII. Fig. 71.

Body variable in shape, in its most typical sedentary condition, irregularly quadrate or subpyriform, tapering and attenuate posteriorly, attached to the chosen fulcrum of support by an attenuate thread-like pedicle equal to or exceeding the length of the body; flagellum very long, curved or flexuose, twice or thrice the length of the body; parenchyma transparent, finely granular; contractile vesicle single, situated towards the anterior border; endoplast subcentral. Length 1-1500".

HAB.—Pond water.

This species was obtained in November 1871 on Anacharis in pond water containing *Codosiga botrytis, Anthophysa vegetans*, and other ordinary fresh-water Flagellata. It is readily distinguished from the preceding species by the great attenuation of the posterior region and marked quadrate contour frequently exhibited by the entire body. In the social group represented at Pl. XIII. Fig. 71, the example occupying the lowermost position to the extreme left, illustrates most conspicuously this characteristic quadrate outline. In the two examples marked *a* and *b* the ingestion of food-substances at opposite points of the periphery, as observed by the author, is delineated. The contour adopted by the animalcule in its free-swimming condition has not as yet been recorded.

GENUS II. BODO, Ehrenberg.

Animalcules ovate or elongate, free-swimming or temporarily attached, exceedingly plastic and changeable in form, the anterior extremity having a single vibratile flagellum, the posterior one prolonged into an attenuate and persistent caudal filament; no distinct oral aperture; occurring mostly as endoparasites within the intestinal viscera of various Vertebrates and Invertebrates.
GENUS BODO.

The genus *Bodo*, as originally instituted by Ehrenberg, included an heterogeneous assemblage of Flagellata, some with and some without a conspicuous caudal prolongation or filament, while in almost all the existence of an anterior flagellate appendage was entirely overlooked. Out of the total of eight species enumerated and figured by this authority in his grand work 'Die Infusionsthiere,' there can be but little doubt that his *Bodo socialis* is identical with the *Spumella vulgaris* of Cienkowski, and his *B. grandis* with a species of *Anisonema* or *Heteronita*. The residual forms, while for the most part too imperfectly figured and described for identification, include nevertheless two conspicuous species which, having formed the subject of investigation of various later authorities, are found to yield sufficiently well-marked characters for generic diagnosis, and are consequently here retained as typical representatives of the genus. The two in question are the *Bodo intestinalis* and *B. ranarum* of Ehrenberg as hereafter described, and around which may be grouped a considerable number of animalcules that appear to exhibit a fundamental correspondence in all essential points with the terms submitted in the foregoing diagnosis. In no instance, as yet, has the inception of solid food by any representative of the genus *Bodo* been actually witnessed, although one species, *B. julidus*, described by Professor Leidy, would appear, so far as may be decided on by his drawings, to be capable of ingesting such solid food-particles on its lateral border, and therefore probably at all parts of its periphery. It is by no means improbable, however, that in the majority of instances, and in a manner corresponding to that of the Opalinidae, these endoparasitic animalcules assimilate the nutrient intestinal juices of their hosts by direct absorption or endosmosis, and are thus independent of a special oral area. A further investigation into the alimentary capacities and more intimate structural details of the various members of this genus is much to be desired.

From the genus *Ceromonas* of Dujardin, with which in many respects it most closely corresponds, *Bodo*, as here delimited, is to be distinguished by the capacity and general tendency possessed by its representatives of forming a temporary or permanent adhesion to neighbouring objects through the medium of its persistent caudal prolongation; *Ceromonas*, while similarly caudate, is entirely free-swimming. The distinction between these two genera as here constituted is therefore precisely parallel to that which obtains between the two generic groups *Monas* and *Oikomonas*. With *Oikomonas* in its attached condition, the members of the present generic group still more closely coincide, their distinction in this instance being manifested, however, by their retention of the caudal filament in both their free and attached conditions.

Stein, in his volume of the Flagellata, figures as representatives of the genus *Bodo*, various species of *Heteronita* and *Amphimonas*, as defined by Dujardin, these two last-named genera being consequently though without sufficient grounds suppressed. Typical members of the genus *Bodo* as here constituted do not appear as yet to have fallen within the cognizance of this authority.

Bodo intestinalis, Ehr. Pl. XIV. Fig. 14.

Body colourless, transparent, elongate-ovate, conical or clavate, rounded anteriorly, attenuate and pointed posteriorly, about three times as long as broad; tail-like filament about equalling the body in length. Length 1-1700".

HAB.—Intestinal viscera of various frogs, toads, and tailed Amphibia.

The examples referred to this species, figured and described by Perty under the title of *Ceromonas intestinalis*, and found in the intestine of *Triton cristatus*, are represented with a caudal filament two or three times as long as the body. It possibly represents a distinct variety. Professor Leidy has obtained the same
species from the rectum of the American toad, Bufo americanus. The Monas intestinalis of Dujardin, discovered among the excrement of Triton palmipes, is apparently also synonymous with this type.

Bodo ranarum, Ehr.

Body colourless, transparent, subovate, about twice as long as broad, pointed at each extremity, but more so posteriorly; caudal filament shorter than the body. Length 1-1440".

HAB.—Intestinal mucus of various frogs and toads.

The habitat of this species being identical with the preceding, suggests the possibility of its being merely a transitional condition of it. Its specific distinction is at the same time recognized by Perty, Schmarda, and Diesing.

Bodo hominis, Davaine sp.

Body pyriform, anterior flagellum much longer than the body; caudal filament rigid, nearly equalling it in length. Length 1–2500".

HAB.—The human intestine, found associated with the faecal evacuations of cholera patients and in typhoidal affections; in the latter instance the animalcules are usually of smaller size; occasionally also abundantly in the gelatinous excreta of infants.

This type is identical with the Cercomonas hominis of Davaine referred to in Leuckart's 'Menschlichen Parasiten,' Bd. i. p. 143, 1863.

Bodo helicis, Leidy sp. Pl. XIV. Figs. 12 and 13.

Body exceedingly plastic and changeable in form, elongate-ellipsoid, fusiform, or ovate; caudal filament equal to or exceeding the body in length; anterior flagellum short; parenchyma colourless, finely granular, enclosing an anterior and posterior vesicula, representing probably the imperfectly observed endoplast and contractile vesicle. Length 1–1500" to 1–1200".

HAB.—Copulatory tubes of various land-snails, Helicidae.

This species was originally described under the generic title of Cryptobia and Crypticus by Professor Leidy, but has since been referred to Ehrenberg's genus Bodo by Diesing. Among the numerous examples represented in the woodcut accompanying Professor Leidy's original description, several of the animalcules, as shown at Fig. 13, exhibit lateral protuberances with enclosed particles, which have apparently been engulfed laterally in the same manner that food-substances are ingested by the genera Oikomonas, Spumella, and other Pantostomata.

Bodo julidis, Leidy. Pl. XIV. Figs. 1–3.

Body changeable in form, globose, oval, or pyriform; caudal filament twice the length of the body, capable of active movements and frequently twisted at its extremity in a loop-like manner; parenchyma translucent greenish, slightly granular, enclosing one or two large spherical vacuoles, and numerous minute ones. Diameter 1–3000".

HAB.—The large intestine of Julius marginatus.
According to Professor Leidy, this species occurs often in numbers which must be estimated by millions, within the intestinal canal of the above-named Myriapod, its companion in such habitat being the ciliate animalcule \(N_{clotherus \text{ velox}} \).

Bodo colubrorum, Hammerschmidt.

Body hyaline, ovato-lanceolate; anterior flagellum longer than the body, the caudal filament of about equal length. Length 1-3450" to 1-2880".
HAB.—Cloaca of the common snake, *Tropidonotus natrix*.

Bodo lymnaei, Stiebel sp **PL. XIV. FIGS. 9–11.**

Body hyaline, changeable in shape, more usually pyriform; caudal filament equalling the body in length, anterior flagellum scarcely as long. Length 1-1200". **HAB.**—Viscera of the pond-snail, *Lymnaeus stagnalis*.

Although first referred to the present genus by Diesing, this form was previously described by Stiebel, Karsch, and Ecker as a species of *Cercomonas*. The phenomena of encystment of this type have been recorded at some length by the last-named authority.* On examining the dead and opaque eggs of the mollusc above named, many of them were found to be densely packed with minute cysts having a diameter of from 1-500" to 1-350"; these bursting, gave birth to swarms of monadiform germs, which speedily acquired the form and dimensions of the parent zooids. While thus observing the development of the motile zooids from the indurated encystments, Ecker does not appear to have witnessed the production of these cysts by the adult animalcules. Taking into consideration the disparity in size between the motile zooids and the cysts, there are, nevertheless, substantial grounds for anticipating that these comparatively large sporocysts are produced through the coalescence of a considerable number of monadiform units. Ecker's representation of a characteristic cyst with the liberated germs is reproduced at **PL. XIV. FIG. 11**.

Bodo melolonthae, Leidy.

Body spherical, caudal filament equal in length to the diameter of the body. **HAB.**—Intestine of the American cockchafers, *Melolontha quercina* and *M. brunnea*.

Bodo musearum, Leidy.

Body elongate, caudal filament four or five times longer than the body, often enclosing a nucleus-like structure. Length 1-2160".
HAB.—Occurring in immense quantities within the intestine of the common house-fly, *Musca domestica*.

This species is probably identical with the *Cercomonas muscae-domestica*, as figured by Stein, and here referred to the new genus *Herpetomonas*.

Bodo maximus, Schmarda. **PL. XIV. FIGS. 4–6.**

Body elongate-pyriform or clavate, rounded anteriorly, attenuate and pointed posteriorly, from two to three or four times as long as broad; caudal

* A. Ecker, "Zur Entwicklungs geschichte der Infusorien," 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. iii., 1851.”
filament equal to or double the length of the body; usually enclosing a conspicuous central vacuole. Length 1–600" to 1–420".

HAB.—Fresh water: Alexandria, Schmarda.

Excepting for its large size, the characters of this species, as described and figured by Schmarda,* closely correspond with those of Bodo intestinalis. No indication of an anterior flagellum is given by that authority, though such doubtless exists. In several instances two or three individuals are represented in Schmarda's drawings, as reproduced at Pl. XIV. Fig. 5, grouped upon a single stem-like caudal filament; this circumstance, taken with its non-parasitic habit, makes it rather doubtful whether this type is a true representative of the genus Bodo.

Bodo urinarius, Hassall. Pl. XIV. Figs. 7 and 8.

Body plastic and variable in shape, subglobose, ovate, or clavate, in the latter instance widest and rounded anteriorly; a flagellum equal in length to the extended body projecting from each extremity. Length of body 1–1000". HAB.—Urine of the human subject.

An abstract of the description of this species, as communicated by Dr. Hassall to the 'Lancet' for November 1859, is herewith appended. The animalcules in question (B. urinarius) are about 1–1000" in length and 1–3000" in breadth, presenting when living and active a rounded or oval form and granular aspect, not unlike that of a delicate mucous corpuscle; sometimes they are broader at one end, and are furnished with one, but usually two, long lashes or cilia produced from opposite extremities, and with which they move themselves with great rapidity. The rounded or oval forms most constant when the animalcules are first placed in a drop of urine beneath the microscope, gradually, as the fluid evaporates, assume a flattened and somewhat twisted outline, their motions becoming more sluggish, and death soon following. It is when they are thus dying or just dead that the flagella become most conspicuous, these organs during their active state being indistinguishable. Not unfrequently the animalcules attach themselves posteriorly to the glass object-carrier, and thus remain for a considerable time swaying to and fro like an inflated balloon held down by cords. Multiplication by longitudinal fission was frequently observed, the animalcules undergoing this process presenting as they swam about the appearance of two conjugated individuals. The species was observed to become developed in alkaline urine containing much animal matter, and which had been freely exposed to the air. On their first appearance they are equally diffused throughout the bulk of liquid, but after multiplying to a considerable extent collect upon the surface, and form there a greasy-looking scum. Indigo mixed with the urine apparently expedited their further development in great multitudes. In all cases—about fifty—in which the presence of this animalcule was detected the urine was either feeably acid or alkaline, and the subject exhibited symptoms of weakness and debility.

Genus III. CERCOMONAS, Dujardin.

Animalcules entirely free-swimming, ovate, globular, or elongate, more or less plastic, developing a single long flagellum at the anterior extremity of the body, and a similar or dissimilar caudal filament at the opposite or posterior extremity; no distinct oral aperture.

HAB.—Fresh water and infusions.

The Cercomonas figured and described without a specific name by Messrs. Dallinger and Drysdale in the ‘Monthly Microscopical Journal’ for August 1873 is here adopted as the type-form of the present genus, it so far, representing the only species of whose distinct individuality, as derived from a knowledge of its entire life-cycle, we can be absolutely certain. There can be but little doubt that many of the species on which the title of Cercomonas was first conferred by Dujardin are transitional conditions of other genera, such as Monas, Oikomonas, Amphimonas, and Heteromita, those only being consequently here retained whose characters accord substantially with the foregoing diagnosis, and which have been described with sufficient distinctness for future identification. In none of the forms yet known are any details recorded respecting the manner in which food is ingested, but it may at the same time be predicted that if a distinct mouth existed in the species so carefully investigated by Messrs. Dallinger and Drysdale it would scarcely have escaped attention. In one of the figures given by Stein of his Cercomonas longicauda, a green vegetable corpuscle is represented as enclosed within the endoplasmic substance, but no indication is given of any special inceptive area. The essentially free-swimming habits of the type-form here described at once distinguishes it from the somewhat similar tailed but adherent members of the genus Bodo.

Cercomonas typicus, S. K. Pl. XIV. Figs. 22-30.

Body ovate, rounded posteriorly, pointed and slightly curved anteriorly, surface smooth; flagellum long and slender, about twice the length of the body; posterior filament usually shorter than the flagellum. Length 1-3500". HAB.—Fish macerations.

This form is identical with the “Cercomonad” described by Messrs. Dallinger and Drysdale in the above-named Journal. Its multiplication by the several processes of coalescence, encystment, and resolution of the amalgamated zooids into spores of infinitesimal minuteness, similar to those already described of Monas Dallingerii, was accurately determined. Rapid increase by the more simple process of transverse fission was likewise abundantly observed; the time occupied by a zooid in thus dividing itself into two was ascertained in an average of forty cases to be exactly four minutes and forty seconds. Adult individuals preparing to conjugate or coalesce with one another assume the amœbiform condition represented at Pl. XIV. Figs. 23 and 24; they then, with the aid of their extemporized pseudopodia, creep about, retaining for a while their flagellate appendages, and present under such conditions an aspect not unlike that of the Rhizo-flagellate form Mastigamoeba simplex. Two of these amœboid zooids coming in contact fuse intimately with one another, and losing their flagella become transformed into a smooth, quiescent cyst, from which myriads of almost imperceptible spores are subsequently liberated.

Cercomonas longicauda, Duj. Pl. XIV. Figs. 17-20.

Body elongate-ovate, fusiform, flexible, terminating posteriorly in a long, undulating, tail-like filament, about twice the length of the body; anterior flagellum slender, usually shorter; contractile vesicle single, laterally located; endoplasm spherical, subcentral. Length of body 1-2700".

HAB.—Vegetable infusions.

This species being figured with fuller details by Stein in the third volume of his 'Infusionsthiere,' has permitted the addition of those data concerning the relative positions of the endoplasm and contractile vesicle which are wanting in Dujardin’s diagnosis. In one of the illustrations given by the first-named authority the animalcule is represented in profile, and in a creeping state, presenting under such conditions a
considerable resemblance to the permanently repent form Reptomonas caudata, previously described. In another example, delineated by Professor Stein, the animalcule encloses within the substance of its parenchyma a recently-devoured spore-like corpuscle. Multiplication by longitudinal fission, preceded by the development, in the first instance, of a second anterior flagellum and caudal filament, is likewise represented in Stein's figures here reproduced.

Cercomonas crassicauda, Stein. Pl. XIV. Figs. 15 and 16.

Body elongate-ovate, from two to two and a half times as long as broad, its substance granulate; caudal filament usually very thick at its base, tapering to a fine point at its distal end, about equal in length to the body; anterior flagellum finer and longer than the caudal filament; contractile vesicles two or three in number, located near the anterior extremity; endoplasm subcentral. Length of body 1–930″.

HAB.—Fresh water and infusions.

The animalcule according with the above diagnosis and accompanying illustrations, while referred by Stein* to the *Cercomonas crassicauda* of Dujardin, appears scarcely to conform with the animalcule upon which this title was originally conferred. The species as described by the last-named writer is said to correspond closely in general appearance with *Monas lenta*, and is regarded as a probable transient phase of that type. It is further spoken of as attaching itself at will by its posterior extremity, which then becomes drawn out in a tail-like manner, and is again absorbed into the substance of the parenchyma on its resumption of a free-swimming state. It is evident that we have here a form closely related to one of the several species of the newly-introduced genus *Oikomonas*, and an animalcule, so far as it is possible to decide in the absence of any explanatory text, entirely distinct from the *Cercomonas crassicauda* of Friedrich Stein. In several of the examples figured by this last authority, lobate or more or less attenuate pseudopodal prolongations are, as shown at Pl. XIV. Fig. 16, protruded from around the base of the caudal filament, representing probably the amœboid phase preceding encystment or genetic union.

Cercomonas globulus, Duj.

Body subglobose, somewhat pointed anteriorly, surface slightly tubercular; flagellum and posterior filament subequal in length, two or three times as long as the body, the former more slender and undulating, the latter stiff. Length of body 1–2000″. **HAB.**—Marsh water.

Cercomonas fusiformis, Duj.

Body fusiform, inflated centrally, tapering at the two extremities; flagellum and posterior filament subequal in length, two or three times as long as the body. **HAB.**—Infusions of moss.

Cercomonas cylindrica, Duj. Pl. XIV. Fig. 21.

Body elongate-cylindrical, about four times as long as broad, tapering posteriorly, surface smooth; flagellum and posterior filament slender, equalling the body in length. Length of body 1–2500″. **HAB.**—Infusions of moss.

* 'Infusionsthiere,' Abth. iii., 1878.
GENUS CODONŒCA.

Doubtful Species.

The Ceromonas detracta, C. viridis, C. lacryma, C. acuminata, C. truncata, and C. lobata of Dujardin would appear in a similar manner to represent transitional or amoeboid phases of other monadiform types. The Ceromonades intestinalis, curvata, vorticellaris, ranarum and facula of Perty are apparently for the most part referable to the genus Bodo of Ehrenberg, and in no instance conform with the amended diagnosis of the genus here adopted. Stein's recently figured Ceromonas termo (Oikomonas Steinii), C. musca-domestica, C. ramulosa and C. obesa exhibit, in no instance, that essential characteristic of a true representative of the genus Ceromonas, as manifested by the possession of a persistent caudal filament; these three types are here distributed among the two genera Herpetomonas and Monas proper.

Fam. IV. CODONŒCIDÆ, S. K.

Animalcules inhabiting a horny sheath or lorica; flagellum single, terminal; no distinct oral aperture.

GENUS I. CODONŒCA, James-Clark.

Animalcules solitary, uniflagellate, inhabiting an erect pedicellate lorica, to the bottom of which they are fixed in a sessile manner, and not attached to the same by a secondary flexible pedicle. HAB.—Salt and fresh water.

This genus was established by Professor H. James-Clark for the reception of a single species, differing most essentially from Biososca in the absence of the flexible pedicle, which in the latter genus unites the animalcule with the base or fundus of the lorica, and by its possession of a single flagellum only. To the single marine species first discovered by Professor Clark, a second, fresh-water type is here added.

Codonœca costata, Jas.-Clk. PL. XIV. Fig. 53.

Lorica campanulate, divided by a constriction into two regions; the basal third obconical, tapering gradually towards its junction with the pedicle, the anterior two-thirds bulging out abruptly but narrowing again slightly towards the terminal aperture; the inflated portion sulcate longitudinally by about twenty or thirty equal furrows, which impart a scalloped aspect to the anterior margin; pedicle equal in length to the lorica, somewhat uneven. Contained animalcule elongate-ovate, the posterior end rounded, half filling the narrower proximal third of the lorica, the anterior end somewhat pointed; flagellum vibratile, projecting considerably beyond the orifice of the lorica; colour dingy yellow. Length of lorica 1-1500″. HAB.—Salt water.

The singular form and elegant sculpturing of the lorica of this species in some respects agrees with that of the collared monad Salpingœca ampulla, hereafter described. But a single example of this type has been so far met with by the author, and in that instance an empty lorica only, attached to sea-weed obtained from the Crystal Palace aquarium.

Codonœca inclinata, S. K. PL. XIV. Fig. 54.

Lorica simply ovate, not sulcate longitudinally, attached obliquely to a pedicle of twice its length. Contained animalcule ovate, occupying the
posterior two-thirds of the cavity of the lorica; the flagellum projecting considerably beyond its aperture. Length of lorica 1-1650".

HAB.—Pond water.

The length of the pedicle and its oblique mode of attachment to the lorica, serve to distinguish this type from any other flagellate form here described. It was at first regarded by the author as a species of Bicosceca, with the animalcule in a semi-contracted state, and was so described in the 'Monthly Microscopical Journal' for December 1871. The sessile mode of attachment of the zooid to the bottom of its lorica, added to the presence of a single flagellum only, indicates, however, the necessity of referring it to the present genus.

Genus II. Platytheca, Stein.

Animalcules solitary, ovate, enclosed within a depressed, laterally attached or decumbent lorica; flagellum single, terminal, projecting through the orifice of the lorica.

Platytheca micropora, Stein. Pl. XIII. Fig. 54.

Lorica ovate, depressed, transparent, not quite one and a half times as long as broad, rounded and widest posteriorly, tapering towards the anterior border and there perforated by an exceedingly minute pore-like orifice through which the flagellum of the enclosed animalcule is protruded; body of animalcule depressed pyriform, pointed anteriorly, scarcely filling one-half of the cavity of the lorica; one or more contractile vesicles situate near the anterior extremity; endoplast posteriorly located. Length of lorica 1-1200". HAB.—Fresh water.

This animalcule, while figured by Stein in the recently published volume of his 'Infusionsthiere,' is referred to in the accompanying index as a somewhat doubtful Flagellate type, the flagellum not exhibiting the usual characteristic vibratile movements, and presenting the aspect rather of a fine setum or pseudopodium. The examples delineated were found attached to the superficial cells of the roots of duckweed (*Lemna*). Division by fission is shown to take place within the cavity of the comparatively capacious lorica.

B.—Pantostomata-Dimastiga.

Fam. V. Dendromonadidae, Stein.

Animalcules illoricate, mostly sedentary, with a more or less obliquely truncate anterior border, caused by the lip-like projection of one of its lateral angles; rarely solitary, usually attached singly or in groups to the extremities of a variously-branching pedicle or zoodendrium; flagella two in number, unequal, one long and one short, inserted close to each other towards the centre of the anterior border; parenchyma transparent, granular; endoplast and one or more contractile vesicles usually conspicuous, the latter mostly posteriorly located; no distinct oral aperture, food being incepted indifferently at all parts of the periphery; increasing by longitudinal subdivision.
The representatives of the Dendromonadidae present collectively a type of modification closely analogous to that which obtains among the more highly organized Peritrichous family group of the Vorticellidae. Here as there, while some few are distinguished by their solitary habits, the large majority are conspicuous for the extensive tree-like colony-stocks produced by their associated numbers. These, indeed, frequently present in miniature so striking a resemblance to the tree-like colony-stocks of Epistyliis and other compound Vorticellidae that, in the absence of magnifying power sufficient for the demonstration of their true nature, they have frequently been described as diminutive forms or earlier growths of such higher Ciliata. The probable derivative of the more complex dendritic forms, such as Anthophyla and Dendromonas, from such a primary solitary type as Physomonas, and through such a simply aggregated stock-form as Cladonema, can scarcely be doubted, the fundamental contour and structure of the individual animalcules, as manifested by the oblique lip-like anterior border and flagella of diverse lengths, throughout this natural family group being identical.

Genus I. Physomonas, S. K.

(Greek, phyta, bladder; monas.)

Animalcules solitary, occasionally free-swimming, but normally attached by a slender, flexible, posteriorly developed, thread-like pedicle; body sub-spheroidal, anterior border obliquely truncate, provided with a projecting lip-like prominence; flagella two in number, unequal, one long and one short; endoplast and one or more contractile vesicles mostly conspicuous; no distinct oral aperture, food being ingested at all parts of the periphery. Inhabiting fresh or salt water. Increasing by longitudinal fission and by the subdivision of the entire body into spores.

Physomonas socialis, S. K. Pl. XIV. Figs. 37-45.

Body subglobose, transparent and slightly granular, obliquely truncate anteriorly; primary flagellum two or three times the length of the body, secondary one less than one-half the length of the primary one; pedicle slender and flexible, equalling in length the larger flagellum; contractile vesicles largely developed, two in number, contracting and expanding alternately, located side by side a little behind the median line; endoplast spherical, subcentral. Diameter of body 1-5000" to 1-2500".

Hab.—Pond water with decaying vegetable matter. Increasing by longitudinal fission, and by encystment and the breaking up of the body into spores.

It was originally suspected that this species was either a mere variety of Spumella guttula, having but one short secondary flagellum, or that the last-named type represented the present form immediately antecedent to the process of fission, and when the development of supplementary flagella gives the earliest indication of the approaching change. It has, however, been met with by the author on so many occasions, and is found to exhibit persistently such important and fundamental differences with relation to both its structural and reproductive features, as to necessitate its recognition as both a distinct specific and generic form. Such structural differences are conspicuously manifested, in addition to the character furnished by the flagella, in the less perfectly spheroidal or globose condition of the body, and in its possession of two largely developed contractile vesicles in place of the single one characteristic of S. guttula; there is, further, no trace of the linear
granular band or groove near the anterior extremity, erroneously supposed by Stein and Cienkowski to represent a distinct oral aperture. In its free-swimming condition, again, the present type usually exhibits but little alteration of its sedentary shape, while *S. guttula* is subject under like conditions to the most protean metamorphoses. With respect to the reproductive process, both Stein and Cienkowski accord in attributing to *S. guttula* the production of endogenous spore-masses formed from an isolated central portion of the animalcule, while in *Physomonas socialis*, as here shown, the entire body-mass becomes split up to produce the sporular elements.

Detailing at length the more important features of the reproductive phenomena of the present type, as observed by the author, it may be remarked that, in addition to the ordinary process of longitudinal fission, the encystment of animalcules, accompanied or not by the coalescence of two zooids, and succeeded by the breaking up of the encysted body into comparatively large macrospores, has been witnessed, as also the escape of these latter as simple uniflagellate monadiform germs closely corresponding in contour with the type upon which Perty has instituted the genus *Pleuromonas*, already described. Various phases of this reproductive process will be found delineated at Pl. XIV. Figs. 43-45. As there shown, the animalcules mostly remain attached to their pedicles throughout these transformations, the last-named structure indeed losing its vitality and becoming as rigid and indurated as the peripheral wall of the encystment. The example indicated by the letter *e* in the group delineated at Fig. 43, is of especial interest, it indicating by the two pedicles that support the single cyst, that this latter structure has been formed by the coalescence of two zooids in their attached condition: the two others (*a* and *b*) close to this are as evidently the result of solitary encystment. As made apparent by the principal group illustrative of this species (Fig. 37), it may be described as eminently social, numbers being usually found crowded together on the vegetable debris obtained from those localities which it favours, and these exhibiting by their combined restless movements as they sway to and fro on their slender elastic pedicles—their vibrating flagella producing strong currents in the surrounding water—a scene of animation that is scarcely rivalled by the social groups of the larger and more highly organized representatives of the Ciliata. Although the adult zooids of the same colony correspond in size, a considerable difference is found to subsist between those derived from separate localities. The two extremes in this respect are recorded in the foregoing diagnosis; an intermediate calibre, that of 1-3000", would, however, appear to be most common.

The binary character of the contractile vesicle in this species was determined on numerous occasions, but is necessarily difficult to recognize unless the animalcules face the observer in such a way that the two vesicles are placed side by side, and not one in front of the other. On first examining this type, and mastering the details of its organization and reproductive phenomena, in the year 1871, the writer was disposed to identify it with the *Boeh socialis* of Ehrenberg. The present specific title is even now retained with reference to the probability of such identity. A species of *Physomonas*, closely agreeing with the present form, but having the body more globular and with that anteriorly emarginate aspect caused by the greater extension of one side of the anterior border less marked, has been obtained by the author in sea-water, at St. Heliers, Jersey: this type or variety may be provisionally distinguished by the title of *Physomonas marina*. The characters afforded by the flagella, together with the dimensions of the body, coincide precisely with those of *P. socialis*.

Genus II. Cladonema, S.K.

(Greek, *klados*, branch; *nema*, thread.)

Animalcules forming social colony-stocks, irregularly pyriform, with an obliquely truncate anterior border, attached singly to the extremities of a perfectly flexible, hyaline, slender and thread-like, branching pedicle;
flagella two in number, one long and one short; endoplasm and one or more contractile vesicles usually conspicuous; no distinct oral aperture, food being incepted at all parts of the periphery. Inhabiting fresh water.

The representatives of this genus differ only from those of Physononas, in that the resultants of division by longitudinal fission, instead of being cast off as free-swimming animalcules, remain adherent by their slender thread-like pedicles, and which, taken in the aggregate, present necessarily a more or less regular dichotomous plan of growth.

Cladonema laxa, S. K. Pl. XVII. Figs. 5-7.

Bodies irregularly pyriform, compressed, the anterior border widest, obliquely truncate; attached separately to the extremities of a slender, flexible, thread-like, irregularly-dichotomously branching pedicle; contractile vesicle posteriorly located; endoplasm spherical, subcentral. Length of bodies 1-3250".

HAB.—Pond water, on Myriophyllum. Colony-stocks including from three or four to as many as twenty or more zooids.

This species was first briefly described by the author, with an accompanying figure, in the 'Monthly Microscopical Journal' for December 1871, under the title of Anthophysa laxa; the isolated instead of clustered mode of attachment of the animalcules to their pedicle, added to the flexible, thread-like aspect and consistency of this structure, distinguishes it, however, so conspicuously from the representatives of either the genus Anthophysa or other allied forms described in this treatise, that a new generic title has been created for its reception. Except for the somewhat more elongate contour of their bodies, the colony-stocks of the present form might be aptly compared to a number of zooids of Physononas socialis, with their flexible thread-like pedicles intimately united. The process of multiplication by longitudinal fission, as shown at Pl. XVI. Fig. 6, and also that of the ingestion of solid food-particles at various points of the periphery, may be observed with great facility in the somewhat large and distinctly isolated zooids of this species. At Fig. 7 of the plate just quoted, an example is given of food-inception towards the posterior region of the lateral border. As originally figured and described, this species was reported as forming colony-stocks of three or four zooids only. More luxuriant examples, including as many as twenty or more animalcules, remitted by Mr. Thomas Bolton, of Birmingham, have, however, since been examined, and have supplied the material for the accompanying illustration.

Genus III. Dendromonas, Stein.

Animalcules irregularly pyriform, the anterior border obliquely truncate, stationed singly at the extremities of an erect, rigid, perfectly hyaline and homogeneous, variously branching pedicle or zoodendrium; flagella two in number, one long and the other short; endoplasm and one or more contractile vesicles usually conspicuous; no distinct oral aperture, food-substances being incepted at all parts of the periphery. Inhabiting fresh water.

The rigid and erect composition and mode of growth of the pedicle in this genus distinguish its representatives from those of Cladonema. The hyaline and homogeneous consistence of the pedicle, added to the solitary disposition of the zooids, serves to separate it from Anthophysa.
Dendromonas virgaria, Weisse sp. Pl. XVII. Figs. 1-4.

Bodies irregularly and obliquely pyriform, compressed; zoodendrium erect, slender, evenly dichotomous; contractile vesicles two in number, posteriorly situated; endoplast spherical, subcentral. Length of bodies 1-3250". Height of zoodendrium 1-130".

HAB.—Pond water. Over one hundred zooids frequently included in a single colony-stock.

This species was briefly described by the author, though without an accompanying illustration, in the 'Monthly Microscopical Journal' for December 1871 under the title of Anthophyta Bennetti. It being, however, evidently identical with the form referred to Stein in his recently published volume—in connection with the present generic name—to the Epistyliis virgaria first described by Weisse, such prior specific title is now substituted. There can further be little doubt that the type figured by Stein himself in 'Wiegmann's Archives' for the year 1849, here reproduced at Pl. XVII. Fig. 2, as the probable young condition of Epistyliis anastatica, represents likewise the species now under discussion. Among all of the numerous stock-building pedicellate varieties of the Flagellata figured and described in this treatise, few perhaps excel the present one in the exuberance of growth and graceful symmetry of the erect, branching zoodendrium. The associated colony-stocks of this species have been frequently observed by the author in such abundance on the finely divided leaves of Myriophyllum and other water plants, as to present the aspect of a perfect forest growth of tiny crystal trees, each terminal leaflet replete with life, and quivering with the combined vibratory action of their flagella. The separate animalcules of Dendromonas virgaria correspond essentially with those of Anthophyta vegetans, and need an equally high microscopic power for their satisfactory examination. As recently figured by Stein, a much more angular outline is given to their bodies than was presented by those observed by the author, while a single contractile vesicle only is delineated by this authority stationed close to the anterior border. It is possible, under such circumstances, that the two represent distinct varieties. Examples of this species have been recently remitted to the author by Mr. John Hood, of Dundee.

Dendromonas pusilla, Schmarda sp. Pl. XVII. Fig. 8.

Bodies ovate, stationed singly at the extremities of an irregularly branching, paniculate zoodendrium. Length of bodies 1-3000", of branching zoodendrium 1-160". HAB.—Fresh water.

This species is figured and described by Schmarda* under the title of Epistyliis pusilla. His delineation given, here reproduced, represents the animalcule as seen under a magnification altogether inadequate for the exhibition of the flagellate or other appendages which the zooids severally possessed, these being consequently represented as simply ovate and entirely naked. There can be but little doubt that the type thus figured represents a stock-building flagellate animalcule nearly allied to Dendromonas virgaria, from which, however, it differs in the comparatively irregular plan of subdivision exhibited by the erect zoodendrium.

Genus IV. Anthophyta, Bory.

Animalcules obliquely pyriform, attached in clusters to the extremities of a rigid or slightly flexible, granular and opaque, not hyaline and homogeneous, simple or more or less branching pedicle or zoodendrium; flagella

two in number, one considerably longer than the other; no distinct mouth, food being incepted at any point of the periphery; an endoplast and one or more contractile vesicles usually conspicuous. Inhabiting fresh water.

Anthophyza vegetans, Müller sp.

Pl. XVII. Figs. 13-26, and Pl. XVIII. Figs. 1-10.

Bodies irregularly pyriform, obliquely truncate anteriorly, slightly compressed; attached in rosette-like clusters of fifty or sixty or more zooids to the terminations of an irregularly branching, and in the more robust condition erect, dark brown, longitudinally striate, horn-like pedicle; this pedicle in weakly or overgrown examples simply granular and highly flexuose; contractile vesicles two or more in number, posteriorly located; endoplast spherical, subcentral. Length of bodies 1-4000" to 1-3500".

HAB.—Fresh water, abundant.

Among the earlier writers there has been a general tendency to confound the animalcules of this species—first described by Müller under the title of *Volvox vegetans*, but since more generally known by Bory's title of *Anthophyza Mülleri*—with *Uvella*, this view being even reproduced and adhered to in Pritchard's 'History of the Infusoria,' ed. iv., 1861, and yet more recently in De Fromentel's 'Études sur les Microzoaires.' Such widespread but mistaken opinion as to the affinities of *Anthophyza* has no doubt arisen from the considerable resemblance in mere outward form subsisting between the detached rosette-like clusters, or "cenobia" as they are designated by Stein, of the present species and the permanently free-floating spheroidal colonies of the genus *Uvella* and its allies. Ehrenberg indeed, regarding the floating clusters and attached colony-stocks as independent organisms, conferred upon the latter the title of *Epistylis vegetans* and on the former that of *Uvella uva* and *U. chamaemorus*. The Uvella-like aspect of the floating clusters is nevertheless purely superficial, the individual zooids exhibiting, on closer examination, an essentially distinct type of structure. In further illustration of the diversity of opinion that originally prevailed concerning the nature and affinities of *Anthophyza*, it may be mentioned that Bory de St. Vincent referred it to that doubtful organic group "le règne Psychodaire," proposed by him for the reception of all such types as appeared, with the means then at disposal for their investigation, to form an intermediate link between the animal and vegetable kingdoms.*

By M. Kützing *Anthophyza vegetans* was regarded as a true plant or aquatic fungus of which the branching stem represented the mycelium, and the terminal groups of monads the reproductive bodies or zoogonidia. Viewing it from this aspect this authority placed it among other fungi, and conferred upon it the generic name of *Sterconema*. That the branching stems or zoodendria of this social monad bear a strong likeness to the mycelium of certain cryptogamic types, is not to be denied, more especially as this portion of the organism, usually of a rusty brown hue, is frequently found thickly encrusting aquatic plants without presenting any trace of the clusters of animalcules which in the perfect condition terminate, and originally constructed, each compound branchlet, but subsequently falling away have left but the naked stalks. This circumstance, as explained by Claparède and Lachmann, who unfortunately only succeeded in obtaining the species in such imperfect state, doubtless gave rise to Kützing's opinion of its fungoid character, he accepting the naked branching stalk as the primary portion destined to produce, as an aftergrowth,

* Bory, by the establishment of this transitional organic group, may be said to have completely anticipated Haeckel in his comparatively recent creation of a proposed kingdom of the Protista, already referred to at page 44.
the groups of monads or so-called "zogonidia." This would necessarily be the case if Anthophysa was a plant; on the contrary, however, the stem here, and in all the true animal forms, is produced secondarily from the bodies of the animalcules, and in the present instance in a highly interesting manner. Both Dujardin and Cohn are among those who at an early date decided, on the grounds just stated, upon the animal nature of this organism. Still more recently this type has been made the subject of investigation by Professor H. James-Clark.* As in the case of Monas (Oikomonas), Codosiga, and other Flagellate types treated of in his memoir, that authority advocates for this animalcule the possession of a distinct mouth, and goes so far as to indicate in his accompanying figures the exact position of the supposed oral aperture, namely, on the anterior truncate edge immediately beneath the rostrum or projecting lip-like border, and at the base of the two flagella. There is no doubt that more frequently than otherwise the food-particles thrown back by the action of the flagella do impinge upon this anterior truncate border, and are thus engulfed somewhere near the point just indicated. Prolonged observation on the part of the author has nevertheless elicited that not unfrequently the food-particles strike against other portions of the surface of the body, and are then immediately entrapped by an outflowing film of sarcode in a manner similar to that recorded in this treatise of Oikomonas, Scumella, Physomonas, Amphimonas, and numerous other Pantostomata.

Although advancing so strong, but undoubtedly mistaken an opinion upon the food-assimilating function of Anthophysa vegetans, Professor Clark is altogether silent respecting the opposite and compensating function, of the rejection or evacuation of the digested refuse. Neither has that authority been altogether felicitous in his interpretation concerning the nature and development of the supporting pedicle, which, as presently shown, is intimately connected with the process of defecation. Upon this latter point he thus expresses himself: "As to the development of the stem, I think it quite certain that it grows out of the posterior end of the body. The best proof of this is that I have frequently found a monad nearly sessile upon a clear spot, and attached by a very short, faint, film-like thread. From this size upward, I have no difficulty in finding abundant examples as gradually increasing in diameter as they did in length; this furnishing a pretty strong evidence that the stem grows under the influence of its own innate powers, and is not therefore a deposit emanating from the body of the monad, except perhaps, as far as it may be nourished by a fluid circulating within its hollow core." Professor James-Clark was much mistaken in thus ascribing to the stem of Anthophysa an innate power of growth independent from that of the bodies of the monads. The function of getting rid of waste and digested particles and that of building up the pedicle are in fact co-ordinate; this supporting stem being almost entirely composed of the food-particles cast out from the parenchyma or endoplasm after the monads have extracted from them such nutritive qualities as they possessed on their first inception. We have here indeed a phenomenon precisely parallel in kind, though differing slightly in degree, from what has been already recorded on a previous page of Oikomonas obliquus, concerning which species it was shown, that the food-particles were, after the extraction of their nutritive properties, passed out at the posterior extremity of the body, and accumulated in a heap round the base of the pedicle. The more minute structure and actual mode of the growth of the stem of Anthophysa vegetans, as ascertained by the author's recent investigations, may now be considered. Under ordinary conditions this pedicle or zooodendrium is somewhat flattened, tapering and narrowest at its fixed or proximal extremity, gradually increasing in diameter as it approaches its junction with the terminal mulberry-like group of monads. If the colony is an old one this pedicle is usually divided into three or four branches, the extremity of each branch bearing its monad cluster. The colour of the stem, where it has been formed some time, is a dark rusty brown changing into amber colour, and finally becoming quite diaphanous as it approaches

and is fused with the conjoined posterior extremities of the monad groups. In this region, moreover, the consistence of the pedicle is so soft and flexible that it allows the attached group of monads to gyrate or spin freely backwards and forwards upon its stalk in response to the active vibrations of the innumerable flagella. Not unfrequently, owing to diminution in quantity and quality of the building material used in the fabrication of the stem, it becomes incapable of further supporting these actively motile groups, and snapping through, sets them free in the form of those simply spheroidal clusters so closely resembling superficially the permanently free spheroidal colonies of *Uvella* or *Synura*, with which they were originally confounded. Examples of such free-floating clusters or "caenobia," as delineated respectively by O. F. Müller and Friedrich Stein, are given at Pl. XVII. Fig. 15, and Pl. XVIII. Figs. 2, 4, and 5. The substance of the adult stem of *Anthophysa vegetans* is apparently at first sight horn-like and homogeneous, and similar to that out of which the loricæ and pedicles of many higher Infusoria are composed. Usually a nature akin to chitone is ascribed to this substance, but its affinity is probably much nearer to that of keratose or keratine, the basal substance of the skeletal framework of the fibrous or horny sponges. The comparatively firm consistence of the adult pedicles of the present species readily accounts for their long duration, they being frequently met with even after the monads have died away or become dispersed. Examined more minutely, it is found that the pedicle of *Anthophysa vegetans*, in place of being homogeneous, is, as shown in Pl. XVII. Figs. 16 to 18, striated longitudinally, the number of striae increasing with the prolongation and corresponding greater diameter of the stem, but not themselves undergoing any alteration in their respective diameters.

By feeding a colony of these animalcules with pulverized carmine the significance of the stem with its mode of growth and striated structure became at once apparent. The administered pigment was so greedily ingested, that within a few minutes the body of each monad was gorged with brilliant particles, which regurgitated freely within the body-sarcode after the manner of the food-pellets in *Codosiga* or *Vorticella*. It was not long, however, before the discovery was made that there was little or no nutritive matter in this pigmentsary substance, and its rejection thereupon commenced. This was effected entirely at the posterior extremity, or point of union with the pedicle, of each independent animalcule. In this species each member of the large spheroidal cluster radiates from the same terminal point of a single branchlet, and thus the separate contributions of rejected particles proceeding from each individual, become concentrated at their point of exit into one united stream. A change, however, now came over the aspect of the pedicle itself, for the particles of discarded material, instead of falling away as waste, and accumulating round the base of the pedicle as was observed of *Oikomonas obliqua*, were actually utilized as material out of which to build up and prolong it. The amber colour and striated appearance which had previously characterized this structure disappeared, and the pedicle now continued increasing rapidly in length, composed entirely of particles of carmine bound together by a small admixture of glutinous material passed from the monads’ bodies. So rapidly and abundantly indeed were the carmine-particles received and discharged, that within half an hour the pedicle of one group had nearly doubled its former length, and continued growing at the same rate until a very abnormal and striking effect was produced. The general aspect of an example of *Anthophysa vegetans* with such an artificially constructed stem is illustrated at Pl. XVII. Fig. 18, and in which instance the whole of the pedicle from the point *a* represents the portion that was produced in the space of half an hour. In other instances the process of assimilating the carmine was carried on for a still longer interval, the result in such cases being that, missing its customary strength, the pedicle bent upon itself, forming a loose, flexible loop as shown at Fig. 19. Under ordinary conditions the growth of the pedicle is a much slower process, the pabulum out of which it is built not being usually so abundant, and consisting of more easily digested animal and vegetable particles, which weld together into a more compact and homogeneous mass. The stem-producing property of *Anthophysa* under such ordinary conditions may in fact be compared
with that of some highly finished machine, into one end of which the raw and heterogeneous material is flung to issue at the opposite extremity a perfected and homogeneous fabric. On first passing away from the monad's body this stem is perfectly soft and glutinous, it gradually hardening and acquiring its dark brown hue with exposure to the water. It is only after this prolonged exposure, moreover, that the longitudinal striae previously described make their appearance, such striae again obviously representing the outlines of the individual contributions of each separate monad towards the common fabric, and these separate elements become fused with one another during their pristine soft and plastic state. The ordinary method of increase of the monad clusters of this species, namely by rapid longitudinal fission of the individual zooids, assists materially in demonstrating the opinion here expressed, as to the significance of the striae, for as the stem grows longer and the monads continue to multiply in number the longitudinal striae become also correspondingly more numerous. That there is a permanent hollow core in this structure, as has been maintained by James-Clark, is certainly not supported by the results of the author's investigations. That new-formed part of the stem near its point of junction with the terminal monad group, no doubt exhibits a firmer consistence exteriorly where it comes into direct contact with the water, but this distinction is only temporary and becomes entirely obliterated as the stem increases in age and strength.

Multiplication by longitudinal fission, as already indicated, represents an ordinary method of increase in these animalcules; a primary single monad dividing indefinitely, after the manner of Codosiga or Epistylist, until from the single individual which laid the foundation of the colony, one or more mulberry-like clusters are formed numbering respectively some fifty or sixty individual zooids. Now and then, these terminal clusters break away, and forming new attachments develop compound clusters similar to those from whence they originally sprang. Doubtless, however, there is another more complex method of increase manifested by this species, analogous to what has been already observed of numerous other Flagellata, obtained through the genetic union of two or more individual zooids, and followed by the production of innumerable independent germs or spores. Although up to the present time no direct evidence of such a sporular mode of reproduction is forthcoming, the following phenomena, observed by the author, may possibly serve as a clue towards the supply of this, as yet, missing link in the life-history of the species.

In the month of August 1871, the examination of a leaf of Myriophyllum led to the detection of an oval body adhering to it, closely resembling the egg of some free-swimming Rotifera, as represented at Pi. XVII. Fig. 20. Movements being in progress within this body, promising the early release of its contents, attention was specially concentrated upon it. Only a short interval had elapsed, however, before it became evident that the transparent shell contained innumerable independent organic particles in place of the single multicellular germ of an ordinary egg. As time progressed these separate particles began to exhibit violent ebullition-like movements as though endeavouring to break through the prison wall that encircled them. At the end of half an hour a rift suddenly appeared at one extremity, and a second inner investing membrane was protruded funnel-wise through the aperture, as shown at Fig. 21. The energetic or, so to say, excited motions of the imprisoned particles became now greatly augmented, till at length bursting in its turn (Fig. 22), this second inner capsule let loose into the surrounding water a countless swarm of minute, reniform, uniflagellate animalcules. These monadiform germs, which presented a remarkable resemblance to the somewhat similarly developed progeny of Physomonas socialis, and also to the adult form of the Pleuromonas jaculans of Perry, enjoyed their free roving condition for but a brief interval. Within a few minutes after their escape they became sluggish in their movements, and settling down on the surface of the glass slide withdrew their flagella and changed their shape from reniform to spherical, as shown at Fig. 25. In this quiescent state these spheroidal, and apparently encysted, bodies remained for the next twelve hours, when an accident occurred which interrupted the further investigation of their life-history in so
direct a manner as had been intended. The damp growing-cell in which these organisms were confined, unfortunately became dry during an absence of more than a day's duration. Although everything contained in the cell was completely desiccated, abundant traces were left, nevertheless, of what had taken place previous to the evaporation of the water. At each spot which had been carefully noted as the point of attachment of the quiescent or encysted monads, was a minute, dark brown, striated, branching stem, corresponding in all ways with the characteristic pedicle of Anthophysa vegetans. The process of drying up had necessarily removed every trace of the animalcules whose presence would have still more satisfactorily established the connection between the monadiform products of the original egg-like cyst and the colonies of the species named; the evidence of the branching and striated stems was, however, so substantial as to leave little, if any, doubt of their relationship. How this original ovate cyst, assuming that it belonged to Anthophysa vegetans, was originally produced, remains to be determined. Judging from its comparatively large size it would appear to be most reasonable to surmise that it was formed by the coalescence of an entire colony or spheroidal terminal cluster of the flagelliferous monads, which after encystment broke up into abundant smaller uniflagellate locomotive germs, which made their escape under the conditions just related. A parallel fusion of numerous zooids succeeded by encystment and breaking up of their united masses into numerous spore-like bodies, is afforded in the life-history of the monad first described and figured by Messrs. Dallinger and Drysdale, as the "Hooked Monad," and which finds a place in this volume under the title of Heteromita uncinata. Phenomena closely identical are also presented in that mode of multiplication among the sponge-monads manifested by the production of the swarm-gemmules or so-called ciliated larvae described in Chapter V.

Some slight additional testimony in favour of the above-suggested interpretation of the developmental phenomena of Anthophysa vegetans is afforded by the illustrations of this species given in Stein's recently published work. Among his excellent illustrations of this type—the more important of which are reproduced in Pl. XVIII. of this treatise—a representation is given (see Fig. 6) of a normally detached spheroidal cluster or "œc Nobium," whose constituent monads have become separated from one another, and protrude from their posterior regions tail-like pseudopodal prolongations. At Figs. 7 and 8 of the same plate are represented similarly derived isolated monads that have assumed a conspicuously amoebiform contour. In some instances, as shown at Fig. 9, it would appear that these amoebiform zooids attached themselves separately and lay the foundation of new colonies, but it would seem also highly probable that under such condition they, in common with various other Flagellata, coalesce together and produce sporocysts similar to the one just described.

The highly distinctive longitudinally striate aspect of the branching stem of Anthophysa vegetans is not definitely indicated in any of Stein's figures, and it is further noteworthy that the example selected by him as illustrating the normal stock-form of this interesting species (see Pl. XVIII. Fig. 1) represents that lax and attenuate structural type indicating either the absence of congenial nutriment, or that the colony has outgrown its strength and lacks vital energy sufficient for the production of its customarily erect and comparatively massive zoodendrion. De Fromentel, in his 'Études sur les Microzoaires,' figures a like emaciated colony-stock. An almost precisely parallel deviation from a normally erect to a lax and decumbent growth-form, is afforded by the Peritrichous type, Epistylis flavicans, whose branched zoodendrium, while stiff and erect in its earlier and most robust condition, presents later on that loose and weakly structural form upon which Ehrenberg and other earlier authorities, regarding it as a distinct variety, have conferred the separate specific title of Epistylis grandis. In the original delineation of the species given by O. F. Müller, under the title of Volvox vegetans, reproduced at Pl. XVII. Figs. 13 and 14, the more ordinary rigid and erect growth-form of the branching pedicle is represented. Brightwell, in his 'Infusorial Fauna of Norfolk,' 1848, figures this

* 'Animalcula Infusoria,' 1786.
species in an intermediate or semi-erect condition under Ehrenberg's name of *Epistylis vegetans*.

Anthophysa socialis, From. sp. Pl. XVII. Figs. 9-11.

Bodies broadly ovate, abruptly truncate anteriorly, attached in clusters of about eight zooids only to the extremity of a simple, thick, and evenly granular pedicle. Length of separate zooids 1-3000"; height of supporting pedicle 1-1000" to 1-750".

HAB.—Fresh water, on Confervæ.

The above specific title is adopted for the distinction of the flagellate organism imperfectly figured and described by De Fromentel * under the name of *Pycno-bryon socialis*. Bütschli has already proposed to identify it with *Anthophysa vegetans*, but the more broadly ovate contour of the animalcules, which exhibit a perfectly straight instead of an obliquely truncate anterior border, added to the simple and coarsely granular character of the supporting pedicle, distinguish it in a marked manner from that species. The presence of the secondary and shorter flagellum characteristic of the present genus, was not recognized by De Fromentel; the magnification of 400 diameters only, employed by him in his examination of this and kindred Flagellata, being inadequate for its detection. The form figured by the same writer at pl. ix. fig. 11 of the work quoted, and referred with some doubt to the present type, is evidently a young colony of *Codosiga botrytis*. Bütschli's representation of *Anthophysa vegetans*, reproduced at Pl. XVII. Fig. 11, is apparently identical with the present animalcule and can certainly not be accepted as a typical example of the last-named species.

Genus V. Cephalothamniun, Stein.

Animalcules obliquely pyriform, attached in groups to the extremities of an erect, rigid, hyaline and homogeneous, more or less extensively branching pedicle or zoodendrium; flagella two in number, one long and one short; endoplasm and one or more contractile vesicles usually conspicuous. Inhabiting fresh water.

The representatives of this genus while corresponding, in the form and structure of the individual monads and their mode of groupment, with those of *Anthophysa*, are to be distinguished from them by the stiff, hyaline, and homogeneous composition of the supporting pedicle.

Cephalothamniun caespitosa, S. K. sp.

Pl. XVII. Figs. 27-32, and Pl. XVIII. Figs. 33-35.

Animalcules somewhat variable in shape, mostly irregularly and obliquely pyriform, attached in clusters of from two or three to as many as six or eight to the summit of a simple or sparsely divided pedicle; pedicle rarely exceeding the height of the individual animalcules. Length of separate bodies 1-5000".

HAB.—Fresh water, attached to a species of *Cyclops*.

This animalcule was first figured and described by the author under the title of *Anthophysa caespitosa* in a communication made to the Linnean Society in June 1877, and has more recently received, at the hands of Stein, the name of *Cephalo-
thamnium cyclopum. While readily adopting Stein's proposed generic designation, the author's earlier conferred specific one is here retained. Superficially examined, the dense clusters of this specific type, as first met with, presented a considerable resemblance to the gregarious colonies of Deltononas cyclopum described on a succeeding page. A nearer investigation, however, revealed the presence of the common supporting stem or pedicle. In no instance was this supporting pedicle found to exceed in height the length of a single animalcule's body, while in most cases it scarcely attained to one-half that altitude. While usually perfectly simple, the larger colony-stocks occasionally exhibit a rudimentary branching of the pedicle towards the summit, none so far met with by the author, however, presenting so distinct a development of secondary branches as is indicated in Stein's figure reproduced at Pl. XVIII.

Examined separately, the zooids of this species were found to present a considerable range of variation in their form and general aspect, their component sarcode exhibiting a more plastic or less firm consistence than in those of the Dendromonadidae previously described. Here, too, for the first time among the representatives of this family group, examples were observed in which the flagella were entirely retracted, and short pseudopodium-like processes projected from either one portion or the general surface of the body. Phases of this amcebiform condition, as represented at Pl. XVII. Figs. 30 and 31, correspond in a remarkable manner with the analogous amcebiform condition of the collared monad Codosiga botrytis delineated at Pl. II. Fig. 25. This metamorphosed state is no doubt intimately connected with the process of reproduction. The somewhat abnormal process of multiplication by transverse fission, resulting in the product of a free-swimming zooid, was observed on one occasion, and is represented at Pl. XVII. Fig. 32. This species has been obtained by the writer attached to a species of Cyclops taken from ponds on Wandsworth Common.

Cephalothamnium cuneatum, S. K. Pl. XVII. Fig. 12.

Bodies subtriangular or cuneiform, compressed, attached in clusters of about eight zooids to a slender, rectilinear, simple, or sparsely bifurcating pedicle. Length of bodies 1-2500'.

HAB.—Pond water, on a species of Cyclops.

Examples of this species have been met with on one occasion only on the Entomostracon mentioned, obtained from a pond near Acton. The most luxuriant specimen presented only the single bifurcation of the pedicle, as represented in the accompanying illustration. The larger size and more regular cuneiform contour of the animalcules, combined with the comparatively greater and more symmetrical development of the pedicle, distinguish this form from A. caespitosa with which it is otherwise most nearly related.

Fam. VI. BIKCECIDÆ, Stein.

Animalcules sedentary, ovate or pyriform, with a usually more or less projecting anterior lip-like prominence, solitary or colonially associated, secreting separate horny sheaths or loricae, which are mostly stalked; flagella terminal, two in number, one long and one short; parenchyma transparent; no distinct oral aperture; endoplasm and one or more contractile vesicles usually conspicuous; increasing by transverse subdivision and by the separation of the body into a mass of sporular elements. Inhabiting fresh and salt water.
ORDER FLAGELLATA-PANTOSTOMATA.

The animalcules relegated to this family group closely coincide with those of the Dendromonadidae last described, but are to be distinguished from them by their secretion of horny loricæ and normally transverse mode of fission; the relationship of these two groups is consequently closely parallel with that which subsists between the naked and loricate sections of the Vorticellidae.

GENUS I. HEDRAÆOPHYSA, S. K.

(Greek, *hedraios*, sessile; *physa*, bladder.)

Animalcules solitary, irregularly ovate, possessing a more or less conspicuous anterior lip-like prominence, inhabiting horny sheaths or loricæ, which are attached in a sessile manner, without an intermediate pedicle, to subaquatic objects; flagella two in number, unequal, one long and one short, originating close to each other near the centre of the anterior border.

The representatives of this genus differ from those of Bicosoeca merely in the absence of a supporting pedicle to the loria. A single species, inhabiting salt water, has as yet been observed.

Hedraeophysa bulla, S. K. Pl. XVIII. Fig. 24.

Loria subglobose, bubble-like, anterior aperture of small dimensions; animalcule occupying the greater portion of the cavity of the loria, attached in a sessile manner to its bottom; height of loria 1–4000".

HAB.—Salt water.

A single example only of this species has been so far met with, being then obtained by the author attached to Conferva from sea-water collected at St. Heliers, Jersey.

GENUS II. BICOSOÉCA, James-Clark.

Animalcules solitary, more or less ovate, with a projecting anterior lip-like prominence, inhabiting simple, pedicellate, horny loricæ, to the bottom of which they are attached by a thread-like contractile ligament or peduncle; flagella two in number, unequal, one long and one short; an endoplasm and one or more contractile vesicles usually conspicuous; no distinct oral aperture, food being incepted at all points of the periphery. Increasing by transverse fission and by the subdivision of the body into spores.

As first described by Professor H. James-Clark, the members of this genus were represented as possessing a single vibratile flagellum only. The existence of a comparatively minute secondary one has, however, been clearly demonstrated by the author on innumerable occasions, and in connection with a variety of specific types. The homologue of a secondary flagellum has been supposed by Professor Clark to exist in *B. lacustris* in the posterior eccentrically developed contractile ligament which fixes the animalcule to the bottom of its loria, and which in such case he maintains favours the interpretation of Bicosoëca as a thecated *Heteromita* or *Anisospora* permanently affixed in its sheath by the trailing or gubernacular flagellum. That Bicosoëca originates from a motile Heteromitus zoid is shown by the author in the following descriptions of *B. lacustris* and *B. pocillum*; but the accompanying demonstration of the existence of two vibratile flagella, in addition to the contractile ligament, during the more normal sedentary conditions of these species, entirely negatives Professor Clark's hypothesis. In *Bicosoëca pocillum*, more especially, the
primary origin of the contractile pedicle as an altogether independent tail-like prolongation of the posterior region is clearly manifested. Stein* substitutes the title of Bicocca for this genus as more etymologically correct.

Lorica elongate-ovate, widest posteriorly, a little over twice as long as broad, supported on a pedicle which nearly equals it in length; animalcule when extended projecting beyond the aperture of the lorica, produced anteriorly in the form of a projecting lip-like prominence, attached posteriorly to the bottom of the lorica by an eccentrically developed, thread-like, contractile ligament; flagella uneven, one long and one short, the longer one when retracted rolled spirally within the cavity of the lorica; contractile vesicles two or three in number, posteriorly situated; endoplast spherical, subcentral. Length of lorica 1–2500".

HAB.—Pond water; abundant.

This species represents, undoubtedly, one of the most widely distributed members of the Flagellata, it having been met with by the author in more or less abundance on weeds from almost every sample of pond-water examined. The presence of the second and comparatively very short flagellum is difficult to determine without the employment of a high magnifying power of the microscope (800 diameters and upwards) and a careful manipulation of the illuminating agency. In the descriptions illustrative of this type, indeed, as originally given by H. James-Clark, or more subsequently by Stein or Bütschli, a single long flagellum only is reported to exist. The possession of a minute supplementary appendage has, however, been repeatedly corroborated, and more recently with the advantage of verification by an independent witness. Even where not distinctly visible, its presence is clearly indicated by the tremulous motion of the particles in the vicinity of the much attenuated lip-like prominence, and behind which process of the anterior region this smaller flagellum is frequently more or less completely concealed. The posterior and retractile thread-like ligament securing the animalcule to its lorica in this species is inserted eccentrically, and towards the ventral aspect—a circumstance, however, which is distinctly shown only when a lateral view, as indicated at Pl. XVIII. Fig. 19, is presented. On retracting into its lorica, this thread-like ligament or peduncle is folded tightly on itself, while the longer of the two flagella, as shown at Fig. 17, is thrown into an elegant spiral coil, reminding the observer of the spirally retracted proboscis of a butterfly. The ingestion of food-particles has been observed to take place indifferently at all points of the exposed anterior border, against which region they are cast by the vibrating motions of the long flagellum, the shorter appendage apparently assisting in making further secure the food-substances brought within reach by the longer one.

The most general method of reproduction exhibited by *Bicocca lacustris*, in common with the other representatives of the same genus, is that of multiplication by transverse fission. Preceding such duplicative process, the body of the animalcule, growing to nearly twice its normal size, almost completely fills the cavity of the lorica; a transverse furrow then makes its way across the centre, increasing in depth until the anterior moiety becomes completely separated from the hinder one, and is liberated into the outer water. Within the course of a few minutes, the posterior portion, which is left attached to the contractile pedicle, develops two new flagella, and has assumed a contour in every way identical with that which the animalcule originally possessed. The detached anterior half issuing from the aperture of the lorica, immediately takes upon itself the form and habits of a free-swimming zooid, altogether unlike the parent, and most nearly resembling

* 'Infusionsthiere,' Abth. iii., 1878.
some representative of Dujardin's genus *Heteromita*. The anterior extremity of the body retains its pointed rostrum, and likewise the two flagella; but the function of these two organs becomes materially altered. Formerly the longer of the two flagella was apparently the most actively employed; this, however, is now left trailing in the rear, while the shorter one is advanced to the front, and, vigorously vibrating, constitutes the motive or propelling power. The movements of the animalcule during this free-swimming condition are, however, by no means regular, nor of long duration. After tumbling about in an aimless sort of manner for a little while—say half an hour—it meets with some surface suitable for attachment, and fixing itself to it, gradually develops a lorica, pedicle, and all other parts that characterize the parent form. In all such instances, where this interesting growth from a detached zooid has been observed, it is worthy of remark that the attachment was effected and the pedicle produced at that extremity which previously bore the flagella, these organs being absorbed and developed anew at the opposite or distal extremity. The peculiar aspect and movements of the free-swimming zooids of *Bicosœca lacustris* distinguish them readily from typical *Heteromita* or other independent forms, while their presence in the water affords a sure indication of the close vicinity of the adult sedentary animalcules from whence, by fission, they were originally derived. Not unfrequently *Bicosœca lacustris* has been observed by the author in a quiescent and apparently encysted state within its lorica; while still more recently an example has been met with—Pl. XVIII. Fig. 18—in which the former contents of the lorica were broken up into numerous spore-like bodies. Empty loricæ are of frequent occurrence, and are evidently of considerable consistence. Although such a phenomenon has not yet been observed, it is highly probable that the free-swimming monads liberated by the process of transverse fission, occasionally coalesce with one another, or with one of the fixed examples, and thus give rise to the sporular encystments, in a manner identical with what is now known to obtain among so many of the ordinary illoricate Flagellata. A first record of the occurrence of this species on this side of the Atlantic, embodying a figure illustrating the existence of two flagella—the second flagellum being there described as a shorter stylate appendage—was communicated by the author to the 'Monthly Microscopical Journal' for December 1871.

Bicosœca gracillipes, J.-Clk. Pl. XVIII. Figs. 21 and 22.

Lorica subcylindrical, slightly everted at the aperture, tapering towards its junction with the pedicle, about three and a half times as long as broad; pedicle twice the length of the lorica; enclosed animalcule elongate-oval, usually entirely enclosed within the cavity of the lorica; contractile vesicle subcentral. Length of lorica 1-2000" of contained animalcule 1-4000".

HAB.—Salt water.

This species was obtained by the author in September 1872, attached to seaweeds and Polyzoa collected at Bognor, Sussex. The example represented at Pl. XVIII. Fig. 22, differs from the more typical form of growth in the shorter comparative length of the pedicle which supports the lorica, and in the more exsert character of the contained zooid.

Bicosœca tenuis, S. K. Pl. XVIII. Fig. 23.

Lorica elongate-ovate or subfusciform, nearly three times as long as broad, tapering equally at each extremity; pedicle scarcely one-half the height of the lorica; animalcule with an attenuate anterior lip-like projection, slightly exsert anteriorly. Length of lorica 1-3000" to 1-2500".

HAB.—Salt water.
This species has been obtained on filamentous algae and Sertularian zoophytes at St. Heliers, Jersey, and likewise at Bognor, Sussex. Both the lorica and contained animalcule, while presenting a considerable resemblance to the common fresh-water type *B. lacustris*, are to be distinguished from the same by their more attenuate contour. The development of this type from a naked *Physomonas*-like form has been observed, the subsequently produced lorica first appearing as a mere bubble-like film round the anterior margin of the animalcule’s body.

Bicosœca pocillum, S. K. Pl. XVIII. Figs. 25-29.

Lorca cup-shaped or subcylindrical, rounded posteriorly, the anterior margin abruptly truncate, neither everted or constricted, varying in height from one and a half to two or three times its greatest breadth; pedicle short, rarely half as high as the lorica; animalcule subovate or calceolate, rounded posteriorly, the anterior margin excave, produced on one side as a broad, flattened, lip-like process, occupying from one-third to one-half of the cavity of the lorica; posterior retractile ligament equalling the body in length; contractile vesicle posteriorly situated; endoplasm spherical, subcentral. Length of lorica 1–2500" to 1–1500", of contained animalcule 1–3250".

HAB.—Salt water attached to the polyparies of hydroid zoophytes and polyzoa.

This species was obtained abundantly by the author at St. Heliers, Jersey, in the summer of the year 1878. It may be readily distinguished from all the preceding members of the genus by the rounded and subcalceolate contour of the animalcule and the plain cup-like or subcylindrical shape of the protective sheath. Multiplication by transverse fission was frequently observed, the free-swimming zoid produced by this process presenting a somewhat variable but highly distinctive form. In certain instances—Pl. XVIII. Fig. 27—the posterior region of the body was symmetrically rounded, as in the parent monad, but in others (Fig. 28) drawn out in an attenuated tail-like manner. The longer or primary flagellum under these free-swimming conditions was always extended in advance, causing by its undulations an even motion in a straightforward direction, while the shorter and secondary flagellum, about half the length of the primary one, was reflected ventrally, and trailed in the rear in a manner that imparted to the animalcule, as in the case of the similar motile zoid of *Bicosœca lacustris*, a close resemblance to the members of the genus *Heteromita*. Encountered in this free-swimming condition only, the animalcule would, indeed, without the slightest inconsistency, be referred to the last-named genus. The motile animalcules, after a brief nomadic existence, were observed to attach themselves, and to gradually develop, by exudation, their transparent lorica. In the fixed condition immediately preceding the secretion of this protective structure, or in which the body had developed only its thread-like pedicle, as shown at Pl. XVIII. Fig. 29, the general form and structure correspond, to all appearances, with those of a typical representative of the genus *Physomonas*. The developmental history of this type is thus shown to exhibit three widely distinct phases, each of them beingcharacteristic successively of the normal or adult condition of the three distinct Flagellate genera *Heteromita*, *Physomonas*, and finally *Bicosœca*. There is doubtless a still earlier and more simple mononflagellate condition resulting from the breaking-up of the parent body into spores, to be discovered. The ingestion of food at various parts of the periphery was frequently observed.

Examples of this species have been recently received by the author, in company with other marine Infusoria, from Mr. Thomas Bolton’s microscopical studio.
Genus III. STYLOBRYON, De Fromentel.

Animalcules social, inhabiting a compound polythecium, composed of separate horny loricae united to one another, or to a common pedicle, through the medium of slender independent footstalks; bodies ovate with a projecting lip-like anterior border, affixed to the bottom of their loricae by a contractile thread-like peduncle; flagella two in number, uneven, one long and one short, the former rolled spirally when retracted; parenchyma transparent and homogeneous. Increasing by transverse subdivision and by the resolution of the body into spores.

Hab.—Fresh water.

Stylobryon petiolatum, Duj. sp. Pl. XXIII. Figs. 17–30.

Component loricae of polythecium wineglass-shaped, widest and slightly everted anteriorly, tapering towards and conically pointed at the posterior extremity, from one and a half to three times as long as broad; united to each other by pedicles which, while subequal in the same polythecium, vary in diverse colony-stocks from less than one-half to three or four times the length of a single lorica; pedicles produced for some little distance within the cavity of their associated loricae, and forming bases of attachment for the enclosed zooids; animalcules plastic and changeable in shape, irregularly ovate, with one of the antero-lateral angles projecting in a lip-like manner, occupying about one-half of the cavity of the lorica, united to it posteriorly by a contractile thread-like peduncle; flagella two in number, one long and one short, inserted at the base of the anterior lip-like prominence, the longer one coiled spirally when retracted; contractile vesicle single, posteriorly located; endoplast spherical, subcentral. Length of loricae 1–800" to 1–500".

Hab.—Pond water, multiplying by transverse fission and by the subdivision of the entire body into spores.

This animalcule was first described by Dujardin under the title of *Dinobryon petiolatum*, the generic one here given being conferred upon it by De Fromentel, who figures and describes it in his 'Microzoaires' as *Stylobryon insignis*. There can further be but little doubt that the species figured by Stein in his recently published volume under the name of *Poteriodendron petiolatum* represents the same form, and this notwithstanding there are certain remarkable structural features accredited to it by this authority which, if fully substantiated, would necessitate its recognition as an entirely distinct organic type. According to Stein, the loricae, while corresponding entirely in their contour and mode of union as defined in the above diagnosis, contain animalcules possessing one flagellum only, but which bear in the anterior region and to one side of the flagellum a supplementary membraniform expansion, resembling in a less conspicuously developed degree the funnel-shaped collar of the Choano-Flagellata. Having, however, had the opportunity of examining an extensive series of examples of the form now under discussion obtained from diverse localities, the author has arrived at the conclusion that so far as the presence of a collar-like structure is concerned, Stein has misinterpreted the actual facts of the case. In no instance could any such independent organ be detected; but in place of this it was observed that the anteriorly developed lip-like prominence occupied
a conspicuous position, and might with ease be identified with the looked-for "collar." A reference to the plate illustrative of this type, in which at Figs. 27 and 28 are reproduced out of Stein's work two colony-stocks with their reputed collars, and at Figs. 17–23 delineations of aggregated colonies and isolated zooids in various aspects and conditions, as observed by the author, will at once make clear the ground of such identification. In Figs. 19 and 20 especially, where a front and profile view is given of an animalcule under the high magnifying power of 1500 diameters, it will be at once seen that the more attenuated sarcode substance entering into the composition of the anterior lip-like prominence necessarily presents in juxtaposition to the denser mass of the body proper the appearance of an independent hyaline organ. Such an aspect and correlated type of structure is by no means, however, restricted to the type now being considered, but is more or less prominent throughout all the members of both the present family and that of the preceding one of the Dendromonadidae. The presence of the shorter of the two flagella, overlooked by Stein, is not easy to detect in living examples, but is shown distinctly in specimens killed with osmic acid.

As indicated in the figures given by the authority just quoted, the compound polytheicum, built up of the more or less numerous separate and independent loricae, exhibit a very considerable range of variation. Thus sometimes, as in Figs. 18 and 27, the loricae may be so closely approximated that the pedicles as independent elements are almost completely subordinated, while in other cases, as at Figs. 17 and 28, these structures may equal or considerably exceed the length of the loricae. The exceptionally long-stalked variety illustrated in the first of these two figures, was obtained by the author from a pond in the neighbourhood of Prestwich, Manchester, in November 1875; more ordinary examples of this species have been collected both in the vicinity of London and at St. Heliers, Jersey. An exceptionally fine specimen preserved with osmic acid, and obtained from one of the water-fowl ponds in the Zoological Gardens, Regent's Park, has been recently placed at the author's disposal by Mr. L. Dreyfus. The zootechnicum embraces over one hundred loricae, united by short pedicles as in the example figured at Pl. XXIII. Fig. 27. Among this group furthermore were included several loricae in which the bodies of the animalcules had become divided up into sporular elements, these in some instances being entirely enclosed within and in others partly discharged from the apertures of the loricae. Examples of such spore-bearing loricae are represented at Figs. 24 and 25, as also isolated spores more highly magnified at Fig. 26.

Stylobryon (Poteriodendron) petiolatum, considered with the aid of the hitherto unrecorded structural details here submitted, must undoubtedly be regarded as a compound modification only of the form Bicossea lacustris, previously described. It is a noteworthy circumstance, in this connection, that Stein himself, while advocating so distinct an interpretation of its structural features, admits it in his classification scheme to the same-family group as Bicossea, while Büttschli* figures and describes it—without indicating the presence of a second flagellum—as a probable compound example only of the last-named species.

While going to press, October 1878, the author has received luxuriant colony-stocks of this species from the neighbourhood of Dundee, through Mr. John Hood, in company with an interesting Melicertan, apparently new to science.

Stylobryon epistyloides, S. K. Pl. XVIII. Fig. 32.

Loricae evenly ovate, about twice as long as broad, attached by short secondary peduncles, in social clusters of from two or three to six or eight zooids, to the summit of a simple, straight, rigid pedicle; anterior extremity of animalcules prolonged into a lip-like prominence, projecting slightly beyond the orifice of the loricae. Length of loricae 1–2000", of contained animalcules 1–3250". HAB.—Fresh water.

ORDER FLAGELLATA-PANTOSTOMATA.

The colonies of this species closely resemble a number of zooids of *Bicoseca lacustris* grouped together at the extremity of a common rigid pedicle. This supporting stem is itself of variable dimensions, being sometimes only half as long as, but more often considerably exceeding in length the ovate loricæ. The compound groups of this species are apparently produced by the repeated longitudinal fission of a primary naked zooid of abnormal size, the formation and induration of the loricæ being accomplished subsequently. Examples of this type have been obtained from both Wansdworth Common and a pond near Acton. It was originally referred by the author to the genus *Dinobryon*, and is figured in connection with that generic title in the 'Popular Science Review' for April 1878.

Fam. VII. AMPHIMONADIDÆ, S. K.

Animalcules naked, free-swimming, or sedentary and adherent by a prolongation of the posterior extremity or by a distinctly developed caudal filament; flagella two in number, terminal, of equal size; no distinct oral aperture, food-substances being incepted at all points of the periphery.

The even development of the two flagella serves to distinguish the representatives of this family group from those of the Dendromonadidae.

Genus I. GONIOMONAS, Stein.

Animalcules free-swimming, persistent in shape, the anterior border obliquely truncate, having at the apex of the projecting angle two subequal and closely approximated flagella; multiplying by longitudinal fission.

HAB.—Fresh water.

This generic group is instituted by Stein* for the reception only of the *Monas truncata* of Fresenius.

Goniomonas truncata, Fres. sp. Pl. XIV. Figs. 31–33.

Body ovate, compressed, from one and a half to three times as long as broad, rounded posteriorly, the anterior border abruptly and obliquely truncate, with a sharply pointed and projecting anterior angle; flagella short, of uniform size, scarcely equalling the body in length, inserted at the apex of the projecting angle; parenchyma transparent, granular, enclosing near the anterior border a transversely placed, dark, band-like body; contractile vesicle situated on the shorter lateral border, a little behind the band-like body; endoplasm located near the centre of the opposite or longer lateral border. Length 1–2500" to 1–1000". HAB.—Fresh water.

This species, synonymous with the *Monas truncata* of Fresenius,† has been recently encountered by both Bütschli and Stein, the former regarding it as a migrant member of the genus *Spumella*, to which he has provisionally relegated it, while the latter, as already mentioned, has instituted the present generic title for its reception. By both of these authorities has the anterior band-like body, first delineated by Fresenius, been observed, but is in either case evidently diversely

* 'Infusionsthiere,' Abth. iii., 1878.
† "Beiträge zur Kenntniss Mikroskopischer Organismen," 'Abhandl. d. Senckenbergischen Naturforschenden Gesellschaft,' Frankfort, 1858.
interpreted. Bütschli remarks that under a high magnifying power it exhibits a granular formation, and is apparently homologous with the eye-like pigment-spot of *Euglena* and other Flagellata, while in Stein's figures, unfortunately accompanied by no descriptive text, the same initial (β) is set against it that is employed in a neighbouring form *Spumella guttula*—distinguished by the possession of a similar granular pig-'ment-band—for the indication of a presumed oral furrow. The presence of ingested food-matter within the substance of the parenchyma is figured and alluded to by Professor Stein, and is probably incepted indifferently at all parts of the periphery. The movements of this type are reported by Bütschli to be rapid and uninterrupted; in some minute examples, however, recently examined by the author, the locomotion was observed to be weak, tremulous, and subject to constant interruption.

Genus II. AMPHIMONAS, Dujardin.

Animalcules of spherical, ovate, or irregular outline, plastic and changeable in shape, attached posteriorly by a slender, non-contractile, thread-like filament: flagella two in number, equal in length and character; food ingested at any portion of the periphery; contractile vesicle and endoplast usually conspicuous.

Out of the three species of this genus enumerated by Dujardin, the one, *Amphimonas caudata*, is referable to the genus *Heteronema*, while the other two, *A. dispar* and *A. brachiata*, are exceedingly doubtful forms that might represent the motile condition of various biflagellate types. The two new species here introduced adapt themselves so well, however, to the broad characters of the genus as first established by Dujardin, that it seems desirable, with some slight amendment, to retain his generic title of *Amphimonas* for them in preference to constructing a new one, which would otherwise be necessary. As here characterized, the representatives of this genus correspond on the one hand with those of *Physomonas*, from which they are to be distinguished by their possession of two equal-sized flagellate appendages, and on the other with those of *Deltomonas*, which while possessing similar flagellate organs, attach themselves bodily to the chosen fulcrum of support without the intermedium of a filamentous pedicle. Perty, in referring a single form to the genus *Amphimonas* under the title of *A. exilis*, evidently associated with Dujardin's generic group an interpretation closely corresponding with the one here adopted. Diesing, in his 'Conspicuous dispositionis familiarum et generum,' has merged the several species of *Hexamita* of Dujardin in the genus *Amphimonas*, though upon what grounds it is difficult to comprehend, the animalcules of that generic type being multiflagellate and, as hitherto recorded, free-swimming forms, presenting no resemblance whatever to the fixed biflagellate monads now under consideration.

Amphimonas globosa, S. K. Pl. XIV. Figs. 55–59.

Body subspherical, attached posteriorly by a slender, flexible, filamentous pedicle, equal in length to about three times its own diameter; flagella even, inserted close to one another in the centre of the anterior border, twice the length of the body, vibrated in an irregular undulating manner; parenchyma hyaline, vacuolar; contractile vesicles two in number, situated a little behind the median line; endoplast spherical, subcentral. Diameter of body 1–2000μ. HAB.—Pond water with Myriophyllum.

The considerably larger size of this animalcule serves to distinguish it at once from *Physomonas socialis* with which, when first seen, it is perhaps liable to be
confounded. On closer examination it is, moreover, found to entirely want the emargination of the anterior border characteristic of that species, this region in the present form being perfectly smooth and even. Lastly, and more importantly, the characters afforded by the flagella separate it decisively from either the last-named or any superficially corresponding type. Neither of these organs, which are of equal length, are extended in that rigid arcuate manner characteristic of the single longer flagellate appendage of either Physomonas, Spumella, or Oikomonas, but are vigorously lashed and vibrated now on one side and then on the other, as in Diplomita, describing a maze of convolutions not easy for the eye to follow; the body of the animalcule meanwhile sways to and fro or floats up and down at the end of its flexible pedicle as light as a child's air-ball at the end of its restraining string. Food-particles, seized by the extremities of the extended flagella, are thrown back against the body, the thin yielding sarcode opening and spreading out to engulf them at whatever point upon which they may happen to impinge. An interesting example of food-ingestion, as observed by the author, will be found represented at Pl. XIV. Figs. 56–59. The ingested morsel, a large Bacillus, was first captured end-on, a transparent film of sarcode flowing out to invest it, the captured prey was then brought crosswise along the anterior border of the animalcule, and finally bent up and tucked away within the inner substance of the little creature's body. At Fig. 55a an example is delineated in the act of ingesting a minute particle on its lateral border. Spherical pedicellated encystments, corresponding closely with those described of Physomonas communis, but of larger size, have been observed in the neighbourhood of the present species, and apparently belonged to it.

Amphimonas divaricants, S. K. Pl. XIV. FIG. 66.

Body irregular in form, widest transversely, rounded posteriorly, the anterior margin abruptly and obliquely truncate, its two lateral angles unequally produced as conical prolongations; flagella corresponding in length and character, borne respectively by the apex of the two anterior angular extensions, equal in length to twice the diameter of the body; pedicle slender, straight, nearly equal to the flagella in length. Height of body 1–10,000", greatest width 1–8500". HAB.—Salt water.

This remarkably minute monad has as yet been met with on one occasion only, a group of two or three individuals being then found attached to conferva filaments from a jar of sea-water containing various polyzoa and hydroid zoophytes, obtained at St. Heliers, Jersey. The flagella, stationed at the termination of the conical anterior prolongations, one of which is produced to twice the height of the other, exhibited great activity, whirling round and round in a circular manner, and at the same time presenting a somewhat sinuous outline. The parenchyma was colourless and slightly granular, and a vacant space, which probably represented the contractile vesicle, being visible towards the posterior extremity. The exceedingly small dimensions of this form necessitated the employment of a magnifying power of no less than 2000 diameters for the satisfactory recognition of the external characters here recorded.

Amphimonas exilis, Perty.

Body conical or wedge-shaped, attenuate posteriorly, the anterior border truncate, sometimes emarginate; flagella long and slender, issuing close to one another from the centre of the anterior border, equal in size, twice the length of the body; parenchyma colourless, motion oscillating. Length of body 1–2180". HAB.—Stale marsh-water.
Perty detected on one occasion the presence of a posterior thread-like filament, and upon which slender evidence only the species is here provisionally retained in the genus *Amphimonas*.

Genus III. Deltonomas, S. K.

(Greek Δ; monas.)

Animalcules variable in form, subtriangular or wedge-shaped, attached by an attenuate prolongation of the posterior extremity of the body, which does not, however, assume the character of a distinct pedicle or caudal filament; flagella two in number, of equal length; no distinct oral aperture. Inhabiting fresh water.

The animalcules of this genus, while corresponding with those of *Amphimonas* in their fixed habits, and in the possession of two subequal anterior flagella, are to be distinguished from them by their direct mode of attachment, without the intermediate of a specially differentiated pedicle.

Deltonomas cyclopum, S. K. Pl. XIV. Figs. 60–65.

Body exceedingly plastic and variable in shape, most usually elongate-clavate, triangular, or wedge-shaped, somewhat compressed, widest and truncate anteriorly, tapering gradually towards the attached posterior extremity; flagella similar in size and character, equalling the body in length, springing from the lateral angles of the truncate anterior border; parenchyma colourless, granular; contractile vesicle conspicuous, situated a little in advance of the centre of the body; endoplasm spherical, subcentral. Length of extended body 1–3000".

Hab.—Pond water. Multiplying mostly by longitudinal, rarely by transverse fission, and by the breaking-up of the body-mass into spores.

This Flagellate type was found in the month of January 1877, literally encrusting with its multitudes the carapace and limbs of specimens of a species of *Cyclops* taken from a horsepond in the neighbourhood of Ashby-de-la-Zouch. The various contours presented by different animalcules of the same colony are almost too numerous for description. Simply ovate, clavate, symmetrically or obliquely pyriform, are among a few of the leading variations from the typical triangular shape exhibited, these variations depending more or less on the state of development or extension of the individual zooids, as also upon the aspect in which they are presented to the view of the observer. The species increases rapidly by longitudinal fission, the first indication given of this process being the appearance of two flagella in place of one only at each of the anterior angles (see Pl. XIV. Fig. 63), this being speedily followed by the gradual cleavage through the centre, from above downwards, of the entire body-substance. The two zooids produced by this process of multiplication, although usually completely separated, remain near to one another on the same fulcrum of support, and in this way a single individual speedily produces an extensive and closely aggregated colony. Not unfrequently instances have been met with in which the units produced in this manner were collected in little clusters of four or more individuals, the bases of which, if not organically united, sprang apparently from the same point of attachment, as shown at Fig. 62. On more rare occasions the phenomenon of transverse fission was likewise witnessed, the divided anterior portion swimming off as a Heteromitous biflagellate monad destined either to lay the foundation of a new community in a more remote district, or not improbably to aid
in compassing the still more rapid multiplication of the species by a genetic fusion with another individual, followed by the breaking-up of the united zooids into spore-like elements. That a sporular mode of increase does occur in connection with this form, was fully demonstrated by the discovery occasionally, among the others, of pyriform encysted individuals, in which the whole body-substance was divided into minute oval bodies as shown at Figs. 64 and 65, such metamorphosed animalcules evidently representing the characteristic sporocyst stage recorded of numerous other flagellate types described in this treatise.

Fam. VIII. SPONGOMONADIDÆ, Stein.

Animalcules symmetrically ovate; usually social, invariably secreting an external protective covering, which may take the form of horny loricae, a gelatinous, more or less granular zoocytium, or an arborescent tubular zoothecium; flagella two in number, of equal length; no distinct oral aperture. Inhabiting fresh water.

The representatives of this family group are to be distinguished from those of the Dendromonadidæ or Bikecidæ—with which their supporting or protective fabrics most nearly correspond—by the symmetry of their bodies and the equal development of the two flagella. The majority of forms included are remarkable for the considerable and often visibly conspicuous size attained by their compound colony-stocks.

Genus I. CLADOMONAS, Stein.

Animalcules ovate, with two anteriorly inserted, equal-sized flagella, living in social colonies, dividing by longitudinal fission, and building up a tubular and more or less regular, dichotomously branching zoothecium; the tubular branches not united to one another in a fasciculate manner, but remaining distinct throughout their length, and enclosing each at its distal end a single zooid; the basal end of each tubule sometimes separated from the preceding one by a distinct joint or dissepiment; zooids possessing no distinct oral aperture. Inhabiting fresh water.

The independence or non-fasciculate arrangement of the tubular branches of the zoothecium of this genus distinguishes it from that of *Rhipidodendron*, next described, with which it otherwise substantially corresponds. The form and structure of the enclosed animalcules are in both instances closely identical.

Cladomonas fruticulosa, Stein. *Pl. XVIII. Figs. 11 AND 12.*

Zoothecium arborescent, erect, branching in the same plane, the separate ramifications short, rarely exceeding twice the length of the zooids, straight or flexuose; the bodies of the zooids evenly ovate, usually projecting for about half-way beyond the orifices of their respective tubules; flagella equal to or exceeding twice the length of the body; contractile vesicle conspicuous, subcentral. Length of bodies 1–3000", height of zoothecium 1–300". HAB.—Fresh water.

The two colonies of this species figured by Stein,* here reproduced, differ remarkably, the tubular ramuscules in one example being perfectly straight, and

* "Infusionsthiere," Abth. iii., 1878.
divaricating at an approximately uniform angle of 45°, while in the second and larger specimen these, while branching in the same plane, curve about in an altogether irregular manner. It is possible that this less regularly constructed tenement represents an instance in which the food supply had been less plentiful, the tubular fabric excreted losing through such a cause—as in the branching stalk of Anthophyse vegetans—its characteristic more erect and rigid bearing. In this comparatively irregular example, there would also appear to be an entire absence of the disseipments or joint-like structure developed at each point of bifurcation in the more symmetrical and rigid form. The adult colonies of this species, according to Stein’s figures, contain from but ten to fourteen zooids; the tubules, immediately succeeding the act of longitudinal fission of the enclosed zooids and preceding the further development and bifurcation of the ramuscule, necessarily enclose two animalcules.

GENUS II. RHIPIDODENDRON, Stein.

Animalcules ovate, with two anteriorly inserted, attenuate and equal-sized vibratile flagella, living in social colonies, and building up a flabellate or dendriform aggregation or zoothecium of closely approximated granular tubules, the cavities of which are separately inhabited by a single zooid; contractile vesicle and endoplast conspicuous; no distinct oral aperture. Inhabiting fresh water.

Rhipidodendron splendidum, Stein. Pl. XVI. Figs. 1–3.

Aggregated tubules of the colony-stock forming an erect, compressed, flabelliform, profusely branching zoothecium; animalcules evenly ovate or elliptical, usually occupying the distal extremity of these tubules, their flagella only projecting into the surrounding water; flagella of equal size, about twice the length of the body; contractile vesicle and endoplast situated close to each other a little behind the centre of the body; parenchyma transparent, granular. Length of zooids 1–2000", height of adult zoothecium 1–75". HAB.—Fresh water.

The plate devoted by Professor Stein to the illustration of this most remarkable type* may be justly described as forming the gem of the entire series contained in his recently issued and important work. The innumerable members of the extensive colony-stock build up an aggregated structure that may be compared most appropriately with the similarly fan-shaped, tubular polyctenes of the Cyclostomatous Polyzoan Tubulipora flabellaris. As suggested by Stein, it would seem just possible that the Aporea ambiguus, described by J. W. Bailey in vol. ii. of the ‘Smithsonian Contributions’ for 1850 as a doubtful algal or stalked infusorial product, is identical with this type; this earlier name, in the event of such identity being substantiated, will necessarily take precedence of Stein’s. So far as it is possible to decide in the absence of full descriptive details, the ramifying tubular zoothecium of this interesting species would seem to be homologous with the solid branching pedicle or zoodendrium of Anthophyse vegetans, its tubular instead of solid character resulting through its secretion or excretion from the entire periphery of the individual animalcules, instead of from their posterior extremity only. As delineated by Stein, the consistence of this excreted zoothecium exhibits a distinct granular aspect, and is, in accordance with the accompanying explanation, of a rust-brown hue. In the larger example figured by this authority, and here reproduced, Pl. XVI. Fig. 1,

* 'Infusionsthiere,' Abh. iii. Taf. iv., 1878.
on a slightly reduced scale, there are no less than two hundred tubules bound together in the flabelliform zootechium, about one-half of these only, however, being occupied by their minute fabricators.

Rhipidodendron Huxleyi, S. K. Pl. XVI. Figs. 4–9.

Aggregated tubules forming a spreading, bush-like, rust-brown, dichotomously branching, granular zootechium, each separate branchlet of which is normally composed of four laterally united tubules; animalcules elongate-ovate, about twice as long as broad, scarcely projecting beyond the apertures of their respective tubules; flagella of equal size, twice the length of the body, inserted close to one another at the anterior extremity. Length of zooids 1–4000", diameter of adult bush-like zootechium 1–10".

HAB.—Bog water.

This second species of the genus *Rhipidodendron* represents one of the latest acquisitions chronicled in this treatise, it having been collected by the author in September 1879 at Lustleigh Cleave, on the borders of Dartmoor, S. Devon; the same bog water yielding also the two new forms hereafter described under the titles of *Spongomonas sacculus* and *Monosiga longicollis*.

From the preceding type the present species may be at once distinguished by the attenuate form of growth of the zootechium, only four tubules, as a rule, instead of a large and indefinite number, being bound up together in each separate ramus-cule. The manner in which this more symmetrically branching zootechium is constructed, is made apparent by reference to the diagrammatic illustration given at Pl. XVI. Fig. 8. As there shown, all four of the monads inhabiting the primitive four-chambered ramus-cule divide by longitudinal fission simultaneously and abreast of one another, the result being the production of eight in place of the preceding four; the lateral pressure thus brought to bear within the comparatively confined space causes each equal moiety of four zooids to diverge slightly from the other, and these continuing independently the fabrication of their granular sheath, produce, at more or less regular intervals, the characteristic bifurcation of the entire mass. The absence of symmetrical subdivision of the zootechium in *R. splendidum* is explained by the fact that the component tubules are congregated in rows two or three deep, the monads evidently not separating persistently in the same plane as obtains in the present type. The rust-brown, bush-like zootechia of this species were produced abundantly, in close proximity to those of *Spongomonas sacculus*, on the sides of the bottle of water brought from the locality quoted, remaining so attached and forming conspicuous objects to the unaided vision for several weeks. Fragmentary branches of the zootechia of a species identical with, or closely allied to, the present form, but exhibiting less regularity in the combination of the individual tubules and plan of bifurcation, have been recently received by the author from Mr. J. Levick, of Birmingham.

Genus III. SPONGOMONAS, Stein.

Animalcules evenly ovate or spheroidal, provided with two equal-sized, anteriorly inserted, vibratile flagella; living in social colonies, and forming by excretion a common domicile, which takes the form of a variously modified gelatinous or semi-granular zoocytium, within which they remain constantly immersed, their flagella only protruding into the outer water; contractile vesicle and endoplasm usually conspicuous; no distinct oral aperture. Inhabiting fresh water. Increasing by longitudinal fission and by the subdivision of the entire body into sporular elements.
GENUS SPONGOMONAS.

This genus is founded by Stein* upon the *Phalanterium intestinum* of Cienkowski, two new and highly characteristic species being added. The desirability of separating this type from the monoflagellate *Phalanterium consociatum* of the last-named writer, had been recognized by the author previous to the publication of Stein’s volume, and he had allotted to it in the manuscript of this work, then in the printer’s hands, the new generic title of *Gleomonas*. The animalcules of *Spongomonas* correspond essentially in general form and structure with those of Rhepidodendron and Cladomonas, differing only in the character of the common supporting and protective element they collectively excrete, which here takes the form of a gelatinous and more or less granular zoocytium, closely analogous to the common slime-sheath produced by *Ophydrium* in the section of the Ciliata.

Spongomonas intestinalis, Cienk. sp. *Pl. XI. Figs. 11-14.*

Gelatinous zoocytium or common investing matrix presenting a slender, attenuate, more or less irregularly convolute, thread-like contour; contained animalcules ovate or subglobose; flagella similar in size and character, twice the length of the body, protruding for almost their entire length beyond the periphery of the zoocytium; contractile vesicle single, lateral; endoplasm spherical, subcentral. Length of zooids 1-3000", diameter of thread-like matrix 1-250" to 1-125".

HAB.—Pond water with *Anthophysa* and *Dinobryon*.

As already stated, this species was primarily included by Cienkowski in his newly established genus, *Phalanterium*.† The more luxuriant colony-stocks may attain, according to this same authority, a length of as much as three centimetres, forming, under such circumstances, conspicuous objects to the unaided vision. These extensive colonies are produced by continuous fission and sporular subdivision from a single primary individual, accompanied by the secretion or exudation by each monad so produced, of mucus and rejectamenta, towards the building-up of the common gelatinous slime-sheath. The free ingestion of particles of indigo, at apparently no distinct oral aperture, is recorded by Cienkowski. The more explicit details of the form, structure, and mode of subdivision of the monads, supplied by Stein’s recent illustrations, are reproduced in the accompanying plate. As there shown, a single zooid, by encystment and segmentation, becomes divided into two, four, or eight sporular elements.

Spongomonas discus, Stein. *Pl. XI. Fig. 10.*

Zoocytium discoidal, flattened, gelatinous, and highly granular; animalcules subospheroidal; flagella two or three times the length of the body. Dimensions 1-3200". HAB.—Fresh water.

The zoocytium of this species corresponds closely in general form with that of *Phalanterium consociatum*, but does not exhibit the radiating or chambered subdivision of its structure characteristic of that type. Stein is somewhat uncertain which of these two represents the originally described *Monas consociata* of Fresenius, but the possession by each animalcule of a single flagellum only, is so clearly indicated in the figures given by that authority, as to leave but little doubt as to the correctness of Cienkowski’s interpretation. Many individuals in the group figured by Stein, here reproduced, have withdrawn their flagella and become separated into

* Infusionstitiere, Abh. iii., 1878.
two or four macrosorpses within spheroidal cavities of the gelatinous zooecium previously occupied by the parent zooids.

Spongomonas uvella, Stein. Pl. XI. Figs. 15 and 16.

Animalcules ovate, nearly twice as long as broad, forming an erect, lobulate zoecium, which tapers posteriorly into a short, slender, and almost stalk-like point of attachment; expanding distally into a variable number of closely associated ovate lobules, each of which is inhabited by a separate zoid; flagella rarely exceeding twice the length of the bodies, mostly less. Length 1–2100", height of zoecium 1–500". HAB.—Fresh water.

The largest colony-stock of this species figured by Stein and here reproduced, contains about a dozen zooids only. No indication is given of spore-production, after the manner of the two preceding types.

Zoecium granular, rust-brown colour, subglobose or sacculate, pendant, many individual zooids crowded within each saccular diverticulum of the common mass; the social colony-stock produced forming in its entirety a conspicuous object to the unaided vision; animalcules elongate-ovate, twice as long as broad; flagella about twice the length of the bodies; contractile vesicle lateral; endoplasm ovate, central. Length of zooids 1–3250", of adult saccular zoecium 1–25" to ½". HAB.—Bog water.

This species was obtained by the author in September 1879, in bog water collected at Lustleigh Cleave, S. Devon, in company with *Rhipidodendron Huxleyi*. As first encountered it was passed over as mere flocculent inorganic debris adherent to the sides of the glass receptacle, and it was only by the accidental inclusion of a fragment with the examined specimens of the last-named type, that its presence and true nature were elicited. Once recognized, its existence in corresponding or even greater abundance than *Rhipidodendron* became apparent, and data of interest concerning its structural characteristics and rapidity of growth were placed on record. In this last connection, more especially, it was found, by taking diurnal measurements, that a colony-stock which on a given day presented in its total bulk the size only of a grain of millet-seed, or a diameter of 1–25", might within three days so increase in calibre as to form a subpyriform pendulous sac, equalling or slightly exceeding the length of half an inch. From this point the zoecium usually became disintegrated, and, falling away piecemeal, liberated the contained monads into the surrounding water under conditions favourable, no doubt, for the establishment of new colonies. A delineation of the contours of such a colony-stock, as observed at the commencement and termination of three consecutive days, is reproduced at Pl. XI. Figs. 18 and 19.

When examined with a high magnifying power, a conspicuous feature of the zoecium of this type, shared, however, not only by the remaining members of this genus, but being in a less degree characteristic also of the more substantial zooecia and zoecia of *Rhipidodendron*, *Phalansterium*, and apparently *Cladomonas*, is manifested by the exceedingly regular distribution and even size of the granular particles distributed through its substance, and which add so materially to its consistence. In the present instance, these granular elements, taken separately, are of a roughly spheroidal shape, having a diameter of about one-tenth of the length of the associated monads, or the 1–30,000th of an inch, and exhibit by transmitted light a pale amber hue. So densely are these minute particles packed together within the transparent and mucilaginous element of the zoecium, that they represent at
least one-half of the total bulk of this structure, imparting to it, by their dense aggregation, the rich chestnut-brown or tawny hue characteristic of the entire organism, as seen even with the unassisted vision. The interpretation of the nature and origin of these minute coloured granules is undoubtedly to be found connected with the phenomena of excretion, and of which they are as much the direct product as is the branching stem or zoodendrium of *Anthophyza vegetans*, described in a previous page. In its more robust state of growth, the excreted elements in that species are welded together so as to produce one tolerably homogeneous, longitudinally striate stem; but in its more weakly condition, or when the food-material supplied is not sufficiently soluble, the excreted refuse is deposited and built into the substance of the stalk as two distinct elements, partly mucous and partly granular. It is this more abnormal condition, as seen in *Anthophyza*, that represents the normal one of *Spongomonas*, and apparently also that of the several previously-named Flagellate genera in which the mucilaginous and granular constituents are as persistently distinct. In *Rhipidodendron* and *Cladomonas*, however, the separate granular and mucilaginous elements, while plainly visible in the external wall of the zoothecium, are more closely amalgamated, and present an almost complete homogeneous consistence in the interior or lining layer of each tubule, the structure in its integrity thus acquiring that greater solidity which permits of its assumption of an erect dendritic contour.

The zooids of *Spongomonas sacculus* were observed to divide by transverse fission, the temporary retraction of the flagella and the lengthening and segmentation of the ovate endoplast constituting the preliminary act to such duplicative process. Sporular subdivision, as recorded of *S. intestinum*, has not as yet been detected. The distinction of this type from *Spongomonas wella*, its apparent nearest ally, is manifested, independently of the comparatively colossal proportions it attains, by the crowded distribution of the monads within each lobe or saccular dilatation of the compound zoocytium, those in the last-named type occupying each a separately projecting chamber.

Genus IV. Diplomita, S. K.

(Greek, *diploos*, double; *mitos*, thread.)

Animalcules solitary, evenly ovate, attached by a thread-like retractile ligament to the bottom of a simple, pedicellate, horny lorica; flagella two in number, similar in length and character; the front margin not produced in a lip-like manner; a rudimentary eye-like pigment-spot often present in the anterior region; no distinct oral aperture. Inhabiting fresh water.

The as yet single known representative of this genus, while resembling *Bicosaxa* in the form of the lorica and its mode of attachment within the same, exhibits in the character of the flagella and general features of the contained animalcule, so close a conformity to the zooids of *Spongomonas* and its allies, that it is here referred to the same family group.

Diplomita socialis, S. K. Pl. XVIII. Figs. 30 and 31.

Lorica evenly ovate, about twice as long as broad, attached by a short pedicle; animalcules with two long terminal flagella of equal length, occupying a little more than one-half of the cavity of the lorica, slightly exsert from the aperture of this structure when extended; contractile vesicle posteriorly located; endoplast spherical, subcentral; parenchyma transparent, homogeneous; a minute, eye-like pigment-spot situated near the anterior extremity. Length of lorica 1-1675"; colour pale brown, or amber. **Hab.**—Pond water.
ORDER FLAGELLATA-PANTOSTOMATA.

The lorica in this species so closely resembles that of *Bicosaea lacustris*, that when empty, except for its larger size, it might be easily mistaken for it. The structure of the enclosed animalcule is, however, altogether distinct. In place of the one long and one short flagellum, there are here two long, equal-sized flagella, which lash the water vigorously in every direction, instead of being extended rigidly in an arcuate form with the extreme point alone vibrating, as obtains in the single long appendage of *Bicosaea*. There is likewise no distinct lip-like projection or rostrum, as in that type, the anterior border being evenly rounded. Where found, this animalcule usually occurs in considerable numbers, completely covering the filaments of *Confervae* or other aquatic objects, as shown in Pl. XVIII. Fig. 31. The colour of the lorica in *Diplomita* is deeper than has as yet been observed in any other representative of the Pantostomatous group, presenting usually in adult examples a pale brown or amber hue. This circumstance may be cited as additional evidence in indication of its near affinity to the generic forms with which it is here correlated, but which in place of secreting separate lorice, build up similarly coloured zoothecia or zoocyta. In all the examples so far examined, a bright spot, corresponding apparently with the so-called eye-speck of *Euglena, Dinobryon*, and other Flagellata, was conspicuous towards the anterior extremity. This type was first figured and briefly described by the author under the title of *Bicosaea socialis*, in the 'Monthly Microscopical Journal' for December 1871.

Fam. IX. HETEROMITIDÆ, S. K.

Animalcules naked, free-swimming or temporarily attached; flagella two in number, the more anterior appendage, "tractellum," locomotive and vibratile, the posterior one, "gubernaculum," usually trailing and adherent; no distinct oral aperture.

The representatives of this family correspond closely in their general form, habits, and character of the flagella with those of the Stomatode Anisonemidae, but differ from them owing to the total absence of a distinct oral aperture, food-ingestion being accomplished at diverse points of the periphery. The appropriate titles of a "gubernaculum" and "tractellum," proposed respectively by Professors H. James-Clark and E. Ray Lankester for the distinction of the peculiar modified trailing flagellum and the ordinary vibratile appendage characteristic of the Heteromitidæ and other Flagellata, are here cordially adopted. A fuller reference to this subject is made in the account given hereafter of the family Anisonemidæ.

Genus I. HETEROMITA, Dujardin.

Animalcules free-swimming or temporarily attached, ovoid, globular, or elongate, plastic and changeable in shape, having no differentiated cuticular investment; flagella two in number, originating close to each other at the anterior or antero-ventral extremity of the body, the foremost, tractellum, directed in advance and constantly vibrated, the more posterior one, gubernaculum, usually trailing, or adherent by its distal extremity; food ingested at any portion of the periphery, possessing no distinct mouth. Inhabiting fresh and salt water, very abundant in animal and vegetable infusions.

Dujardin instituted this genus for the reception of those flagellate forms which, while agreeing with *Heteronema* and *Anisonema* in their external contour, are to be distinguished from them by the absence of a distinct cuticular investment. By many later writers this distinction has been considered insufficient for generic separation. A prolonged and careful investigation of numerous representatives of this genus has, however, enabled the author to point out a second and even more important correlative differentiation. Reference is here made to the ingestive functions, which
in Heteromita correspond with those of Oikomonas, Amphimonas, Physomonas, and other Flagellata previously described, as manifested by the capacity to incept food at any portion of the periphery. Both Anisonema and Heteronema in this respect offer a much more highly advanced structural type, each of these possessing, as demonstrated by Bütschli and Stein, a distinct oral aperture and pharyngeal tract.

In Stein's recently published volume several species of Heteromita are referred to the genus Bodo; the last-named generic title, however, does not adapt itself to the forms included under the same denomination in this treatise, or as comprehended in it by other recent authorities.

The presumed resemblance between certain members of this genus and the so-called zoospores of the parasitic fungus Peronospora infestans will be found discussed in connection with the descriptive account of Heteromita lens.

Heteromita lens, Müller sp. Pl. XV. Figs. 1–17.

Body exceedingly soft and plastic, susceptible of considerable alteration of contour, usually subglobose, peach-shaped, or more or less ovate with a slightly narrower anterior extremity; flagella equal in size, very slender and flexible throughout, about twice the length of the body; endoplasm spherical, subcentral; contractile vesicle posteriorly situated. Length 1–5000" to 1–3250".

HAB.—Vegetable infusions in both fresh and salt water.

This species, here identified with the Monas lens of Müller, occurs in vast abundance in hay infusions in both fresh and salt water, being usually, indeed, the first form to make its appearance in such artificial macerations. By continued and repeated examinations, the life-cycle and developmental manifestations of this type have been successfully traced, and are found to correspond broadly with those of the two species studied by Messrs. Dallinger and Drysdale, next described.

The results of the author's recent investigation of this form may be thus briefly summarized:—So soon as within twelve hours after placing the hay to macerate, the ordinary spring water used had become slightly discoloured, and on examination was found to contain, in addition to Bacteria, numerous excessively minute monadiform beings, spherical in shape, measuring the 1–20,000th part of an inch only in their diameter. These minute organisms, as shown at Pl. XV. Figs. 11–14, occurred singly or united in groups or short monadiform clusters, and propelled themselves through the water with an oscillating motion by the means of single, anteriorly developed, vibratile flagella. These motile organs necessarily required the most careful adjustment of the illuminating agency for their detection, and were often made manifest only by the movements of the particles in the surrounding water induced by their vibrations. At this early stage of their growth the monadiform units might, in their isolated condition, be identified with the Monas punctum or pulvisculus of Ehrenberg, or with any other of the simple globular forms of the genus Monas, that are so minute as to have received at the hands of their first discoverers no more definite description than that of mere moving points. The monadiform or aggregated clusters, on the other hand, delineated at Figs. 11, 12, and 14, so essentially and unmistakably correspond with the younger and more minute conditions of Monas lens, as depicted by O. F. Müller in Table i. fig. 11 of his 'Animalcula Infusoria' (1786), that the author has not the slightest hesitation in identifying them with his species. A closer investigation of fragments of the hay undergoing maceration revealed the presence of crowds of minute quiescent sporiform bodies identical in size with the motile units, and as which they were later on seen to detach themselves and swim away. These quiescent spores were found scattered more or less thickly over the entire surface of the hay, and were in many instances massed together in small symmetrical spheroidal heaps. The growth in the maceration of the motile monadiform units just described, proceeded so rapidly
that within the course of only a few hours the entire field of the microscope, as supplied from the most minute dipping, was found crowded with adult zooids corresponding in form, size, and structure with the terms of the foregoing diagnosis.

In their most characteristic adult state the animalcules of *Heteromita lens* are normally subspherical or peach-shaped, as represented at Pl. XV. Fig. 1, but are subject to considerable individual variation. An ovoid form with a somewhat narrower anterior extremity (Fig. 2), on the symmetrical side, and an irregular, almost amœbiform contour (Fig. 3) on the unsymmetrical one, represent the most constant departures from the typical subspheroidal shape that have to be recorded. The greater portion of these monads were to be seen, as soon as the excitement ensuing upon their transference to the glass slide had subsided, temporarily attached, or as it were anchored, to the glass or vegetable debris through the medium of the hinder flagellum, or gubernaculum, and upon which the body oscillated, as though on a pendulum, through the constantly vibratory action of the anterior appendage. Many others were, however, swimming freely in the water, in some instances trailing their posterior or gubernaculate flagellum in the rear, and flourishing the anterior one in advance, while in others both flagella were directed anteriorly, their joint vibratory action assisting in the task of locomotion. These last-named examples, however, would appear to represent animalcules which had either passed or not yet arrived at their complete development. Division by longitudinal fission, as also the coalescence or fusion of the adult monads (Figs. 7 and 8), were frequently observed, likewise the subsequent encystment and breaking up of the intimately amalgamated zooids into minute spores corresponding precisely in form and size with those from which, as already shown, they originally sprang. In addition to this genetic mode of reproduction, multiplication by the simple encystment and splitting into four, eight, or sixteen segments or macrospores of the single zooids, was likewise authenticated, each such subdivided portion possessing two flagella, and, except for its more minute size, corresponding entirely with the parent animalcules at the time of its liberation into the surrounding water; the more conspicuous features of this reproductive process are represented at Figs. 15-17 of the same plate. Investigations pursued simultaneously with the vegetable material of a like nature macerated in sea-water instead of fresh, were attended by a similar first arrival of a monad perfectly agreeing in form and in its developmental cycle with the present species, excepting that the size was slightly smaller and the endoplasm apparently a little more dense and compact. This slight variation in size and consistence may be reasonably attributed to the higher specific gravity of the fluid medium employed. The *Heteromita granulum* of Dujardin, characterized by its spherical granulate body and two equal, slender flagella—diameter 1-2250", hab. salt water—is probably identical with this marine variety of *H. lens*.

A feature of interest relating to the life-history of the present species that remains to be recorded, bears reference to the conduct of the animalcules under conditions inauspicious to their well-being, and which may be regarded as a modification of the process of diffuence. Thus if confined in quantities between the ordinary slide and cover-glass without a renewal of liquid medium, the oxygen apparently gets insufficient to support life comfortably, the movements of the animalcules grow weaker and more sluggish, and presently losing their capacity of fixing or anchoring themselves by their trailing flagellum, they float freely in the water, and are carried passively in whichever direction the capillary currents produced by the evaporation of the water may set in. Sometimes the normal spheroidal or ovate contour is retained for a considerable interval, but more usually the peripheral wall appears to entirely lose its customary more firm consistence, and the whole body-sarcodc becomes projected in various directions, after the manner of ragged and irregularly developed pseudopodia. As the animalcule drifts helplessly along, these improvised pseudopodia often adhere tenaciously to the slide or other object, arresting its further progress, the aspect manifested under such conditions being represented at Pl. XV. Fig. 4. With a renewal of fresh oxygenated water the animalcules speedily reassume their pristine symmetry and activity, while by a further withholding of this important element complete dissolution soon terminates
the scene. Additional details respecting the discovery of this species both in its adult and sporular conditions, in intimate connection with both hay and growing grass, are recorded at page 136 et seq., of Chapter IV. (see also upper portion of Pl. XI.) devoted to the subject of Spontaneous Generation.

So remarkable a likeness subsists between the so-called biflagellate "zoospores" of the potato-fungus, *Peronospora infestans*, figured by Mr. Worthington Smith in the 'Monthly Microscopical Journal' for September 1876, and the typical adult zooids of *Heteromita lens* as here figured and described, that the author is unable to repress a suspicion that these presumed zoospores actually represent examples of the present cosmopolitan animalcule. Not only are the sizes of the bodies and the various shapes assumed absolutely identical, but even the presence of an endoplast and contractile vesicle, which occupy precisely similar relative positions, is clearly though unconsciously indicated in Mr. Smith's drawings. The abundant and almost invariable development of *H. lens* in connection with decaying foliage and other vegetable matters derived from well nigh every source, renders it not only possible but highly probable that the spores of these animalcules were imported with the potato leaves that formed the subject of Mr. Worthington Smith's investigation, freely developing side by side with the germs of the cryptogamic plant, and during their quiescent states so closely resembling them that their distinct nature and independent origin escaped detection.

Heteromita rostrata, S. K. Pl. XV. Figs. 18–28.

Body elongate-ovate, somewhat inflated posteriorly, the anterior extremity pointed and usually slightly recurved towards the ventral aspect; flagella equally slender, the anterior vibratile flagellum from one and a half to twice the length of the body, the posterior one, or gubernaculum, longer than the preceding, contracting, when the animalcule is attached, in a loose spiral coil; contractile vesicle mostly conspicuous, situated close to the anterior extremity; endoplast located near the opposite or posterior extremity. Length of body 1–3000".

HAB.—Putrefying fish macerations.

The above title is here conferred upon the species figured and described by Messrs. Dallinger and Drysdale * under the name of the "Springing Monad," the springing action suggesting the name being caused by the rapid coiling and uncoiling of the longer anchoring or gubernaculate flagellum in its fixed condition. A similar leaping motion through the contraction of the gubernaculum being common to various other species of the genus *Heteromita*, the technical name here adopted has been conferred upon it more particularly with relation to the peculiar beak-like or rostrate contour of the anterior extremity of the body. The developmental and reproductive phenomena of this form as carefully followed out by its discoverers, correspond broadly with those of the many other monadiform animalcules they examined. Multiplication by the ordinary process of longitudinal fission represents the commonest and most conspicuous mode of increase, the two flagella, as shown at Pl. XV. Fig. 19, participating in the duplicative process. Certain animalcules, however, assume a spherical quiescent state and split obliquely or transversely into halves, each such divided portion swimming away in a form not distinguishable from the typical zooids. Further tracing these motile units, it was found that they did not attach themselves by their anchoring flagella, but wandered about until they came in contact with the ordinary sedentary monads, and with which they immediately coalesced. The ultimate result of this genetic fusion was the production of triangular encystments, which subsequently dehiscing at their three

* 'Monthly Microscopical Journal,' Dec. 1873.*
angles, liberated countless spores of infinitesimal dimensions. A space of ten hours was occupied in the attainment by these almost invisible spores of the typical adult form and size, these germinal products passing, in their onward growth, through a phase in which a single flagellum, and that the posterior or anchoring one, alone was visible. The illustrations given by Messrs. Dallinger and Drysdale of this interesting genetic reproductive process are reproduced at Pl. XV. Figs. 22–28. An adult monad, presenting the essential characteristics of the half-developed monoflagellate condition of *Heteromita rostrata*, recently discovered by the author in salt water, has been previously figured and described under the title of *Ancyrononas marina.*

Heteromita uncinata, S. K. Pl. XV. Figs. 29–41.

Body smooth, ovate, rounded posteriorly, narrower and slightly curved towards the ventral aspect anteriorly; anterior vibratile flagellum short, scarcely exceeding one-half of the length of the body, recurved or hooked at its extremity, posterior or trailing flagellum more than twice the length of the body; contractile vesicle conspicuous, situated near the narrower anterior end; endoplast at the opposite extremity. Length 1–4000” to 1–3000”.

HAB.—Fish macerations in an advanced state of putrefaction.

The foregoing specific name is here proposed for the type figured and described by Messrs. Dallinger and Drysdale * under the title of the “Hooked Monad.” Its developmental cycle, as successfully traced by these gentlemen, differs considerably in its details from that of the form last described. Transverse fission, preceded usually by the assumption of a semi-amoeboïd condition of the subdividing animalcule, constitutes the most simple mode of increase. The more important genetic mode of reproduction was found, however, to consist of the intimate amalgamation not only of two, but often of as many as four or even six individual zooids, the result of such fusion being the production of a larger or smaller spheroidal cyst, from which active monadiform germs of appreciable size, and in many instances already furnished with a single (the posterior) flagellum, were subsequently liberated. This monad is described as progressing rapidly through the water by a series of jerks or springs, which follow each other in constant succession, and are coincident with the movements of the hooked flagellum; no mention is made of its anchoring itself by the longer and trailing one, though this appendage is doubtless used for such a purpose. The so-called “snapping eyelid” alluded to by Messrs. Dallinger and Drysdale, undoubtedly represents the characteristic contractile vesicle, and in those instances where the anterior flagellum is described as having a knob or knot at its free extremity the animalcule is apparently engaged in withdrawing the organ into the substance of its body previous to the assumption of an amoeboïd condition and ultimate encystment.

The phenomenon of the compound coalescence or genetic union of a plurality of zooids, attested to by the authorities here quoted, in connection with *Heteromita uncinata*, is of especial interest, on account of the circumstance that a practically identical process of compound coalescence productive of sporular elements or their equivalents on a comparatively colossal scale obtains in the two groups of the Myxomycetes or Mycetozoa and the Spongida.

In neither of the two species of *Heteromita*, just described, and for whose discovery and life-history we are indebted to the painstaking researches of Messrs. Dallinger and Drysdale, has any intimation whatever been as yet given respecting their alimentary functions. Had a distinct oral orifice existed, or had the inception

* 'Monthly Microscopical Journal,' Jan. 1874.
of solid food-particles at any point been directly observed, testimony to this effect would undoubtedly have been placed on record. Since, however, both in their illustrations and descriptive text all evidence of food-ingestion or of a food-ingesting aperture is conspicuous for its absence, there is substantial ground for premising that these lowly organized beings derive their sustenance after the manner of the Opalinidae, by the direct imbibition, at all parts of their periphery, of the proteaceous nutritive fluids within which they are constantly immersed.

Heteromita ovata, Duj. Pl. XV. Figs. 65 and 66.

Body ovate, narrower anteriorly; surface smooth; endoplasm slightly granulate; anterior or terminative flagellum slender, two or three times longer than body, flexible throughout; posterior or anchoring flagellum four times the length of the body, and twice the thickness of the anterior one; contractile vesicle conspicuous, situated near the anterior extremity. Length of body 1–1000" to 1–700".

HAB.—River water with aquatic plants.

A form agreeing structurally with the terms of the foregoing diagnosis has been met with by the author in pond water, its increase by longitudinal fission, and the inception of food at various points of the periphery being also observed.

An animalcule presumed to be identical with this species but having a depressed lenticular contour with a plane ventral and convex dorsal surface, is figured by Stein under the name of *Bodo ovatus*, his drawings of it being represented in the accompanying plate. As there indicated, no less than three minute spheroidal contractile vesicles are stationed at the anterior extremity, the endoplasm being located close behind them in the middle line. The two flagella as delineated by Stein are very slender and subequal in both length and thickness.

Heteromita globosa, Stein sp. Pl. XV. Figs. 61–64.

Body somewhat variable in shape, more usually subspheroidal or elliptical, surface coarsely granulate; flagella slender, subequal in length and thickness, two or three times the length of the body, inserted ventrally; contractile vesicle single, situated close to the centre of the right lateral border; endoplasm spherical, located in the median line towards the anterior extremity. Length of body 1–2500" to 1–1000".

HAB.—Pond water.

This species is figured by Stein* in association with the title of *Bodo globosus*. An apparently identical form has been recently met with by the author in pond water from the neighbourhood of Birmingham, remitted by Mr. Levick. Numbers were crowded together within the carapace of a dead rotifer, *Noteus*, feasting upon its contents under conditions analogous to those reproduced from Stein's drawings at Pl. XV. Fig. 64, the pabulum in this instance being however the cell-contents of a fragment of *Edogonium*. When thus collected within a small space, the distinction between the vibratile and trailing flagellum is not apparent, both appendages being deployed in advance and exhibiting an irregular undulatory motion. Except for their larger size and coarse granulation, the animalcules of this species coincide considerably in general form and proportions with those of *Heteromita lens*. The contractile vesicle, among other points of distinction, may be cited, however, as occupying a more anterior position.

‘Infusionsthiere,’ Abth. iii., 1878.
ORDER FLAGELLATA-PANTOSTOMATA.

Heteromita exigua, Perty.

Body oval or spheroidal, transparent; flagella about three times the length of the body, one projecting in front, the other trailing. Length 1-7200" to 1-4800".

It is almost impossible to decide from the brief account given by Perty, whether this species is an independent form or only the young of another animalcule.

Heteromita pusilla, Perty.

Body elongate-ovate, subcylindrical, more or less constricted centrally, sometimes emarginate posteriorly; flagella from two to two and a half times the length of the body; endoplasm slightly granulate; movements oscillating. Length 1-3600" to 1-2160".

HAB.—Stagnant water with Conferva.

Heteromita amyli, Cienkowski sp.

Body elongate-fusiform, pointed at each extremity, seven or eight times as long as broad; flagella fine, subequal, not quite as long as the body. Length 1-600". HAB.—Pond water with decaying Nitella.

This species, originally described by Cienkowski under the name of Monas amyli,* must necessarily be separated from the genus Monas on account of its possessing two flagellate appendages. The comportment and proportions of these organs in accordance with that writer's drawings, correspond furthermore so closely with those of the ordinary representatives of the present genus, that it appears desirable to retain it in the same. The assumption of an amoeboid phase accompanied by the extension of slender ray-like pseudopodia was witnessed, as also the fusion or coalescence of numerous animalcules into a single mass during their amoeboid state after the manner of Heteromita uncinata previously described. The result of this conjugative process was the formation of a spheroidal cyst, the contents of which split up into innumerable fragments to be subsequently released as monadiform germs. The presence of a spherical endoplasm and one or more contractile vesicles was noted during the amoeboid phase. Excepting that this animalcule is not reported to possess the faculty of assuming a spirally twisted contour, its general form and proportions correspond closely with those of the Heteromita (Spiromonas) angustata of Dujardin hereafter described.

Heteromita sulcata, Mereschk.

Body somewhat variable in form, more or less oval or cylindrical, about twice as long as broad, the hinder extremity rounded or evenly truncate, the anterior border obliquely truncate; the dorsal surface traversed throughout by three or four parallel longitudinal furrows or striations; flagella slender, subequal in size, the posterior or trailing one slightly the longer, not twice the length of the body; contractile vesicle single, of large size, situated close to the insertion of the flagella. Dimensions unrecorded.

HAB.—Fresh water: Northern Russia (Mereschkowski †).

* "Beiträge zur Kenntniss der Monaden," 'Archiv für Mikroskopische Anatomie,' Bd. i., 1865.
Heteromita adunca, Mereschk. Pl. XV. Fig. 44.

Body oval, rounded posteriorly, sharply pointed and curved to one side anteriorly, nearly three times as long as broad; cuticular surface entirely smooth; endoplasm transparent, finely granular; flagella slender, inserted at the anterior extremity, the vibratile appendage slightly longer than the body, the trailing one exceeding twice that length; contractile vesicle conspicuous, situated in the anterior body-half. Length 1–4000".

HAB.—Salt water from the White Sea; on the surface of infusions (Mereschkowski). Movements quick, tremulous, in a zigzag manner.

Heteromita cylindrica, Mereschk.

Body cylindrical, evenly rounded at both extremities, twice as long as broad; cuticular surface entirely smooth; endoplasm finely granulate; flagella slender, the anterior one equalling the body in length, the posterior one about twice as long; contractile vesicle single, subcentral, very large. Length 1–700". HAB.—Salt water: White Sea (Mereschkowski).

Genus II. Colponema, Stein.

Animalcules free-swimming, persistent in shape, irregularly ovate, the anterior extremity pointed and curved to one side, the ventral surface with a broad, subcentral, longitudinal groove or channel; flagella two in number, the one vibratile and the other trailing, the former inserted at the base of the anterior projection, and in front of the oral aperture, the latter produced from towards the centre of the ventral groove.

Colponema loxodes, Stein. Pl. XV. Figs. 45 and 46.

Body gibbously ovate or subsigmoidal, about twice as long as broad, the anterior extremity pointed, curved towards the left, the posterior extremity more bluntly pointed, sometimes straight and sometimes curved towards the right, thus giving the body a sigmoidal outline; ventral groove very wide in the anterior region, narrowing as it approaches the posterior termination; flagella slender, subequal, exceeding the body in length; endoplasm transparent, granular; contractile vesicle spherical, centrally located; endoplasm indistinct. Length 1–900". HAB.—Fresh water.

The figures of this singular form, as here reproduced, without descriptive details, are alone published by Stein in his recently issued volume. In the lateral flexure of the anterior region it somewhat resembles the Heteromita adunca of Mereschkowski.

Genus III. Spiromonas, Perty.

Animalcules free-swimming or temporarily attached, soft and plastic, flattened or compressed, twisted spirally on their long axis, bearing two anteriorly inserted subequal flagella, one of which is adherent at will. Inhabiting infusions and water with decomposing organic matter.
The genus *Spiromonas*, as comprehended in this treatise, includes the *Cyclidium distortum* of Dujardin and *Spiromonas volubilis* of Perty; to which is added a third very distinct species apparently identical with the *Heteromita angustata* of the first-named investigator, whose developmental phenomena have been recently traced by the author. The two previously mentioned forms have been regarded by some authorities as possibly representing transitional conditions only of *Monas lens*, but such an interpretation cannot be entertained in face of the data here recorded concerning the entire life of that species. The members of this genus, as originally described by Dujardin, are represented as having a single flagellum only, while Perty indicates the possession of no appendage whatever. The comparatively inferior quality of the optical appliances at the disposal of these earlier investigators, however, amply accounts for such an oversight.

Spiromonas distortum, Duj. sp. PL. XX. FIG. 23.

Body oval, compressed and nodular, with thickened tuberculate margins, twisted irregularly on its longitudinal axis in a single spire. Length 1–1000".

HAB.—Fresh water containing decomposing animal matter.

This species, which is described by Dujardin under the name of *Cyclidium distortum*, is represented as bearing a single long and slender flagellum at its anterior extremity, though probably a second one exists. The young zooids were observed by him to be simply discoidal, the spiral flexure being characteristic only of the adult animalcules.

Spiromonas volubilis, Perty.

Body leaf-like, compressed, rounded at both extremities, twisted longitudinally in a single spire; surface smooth, the margins not thickened or tuberculate. Length 1–1300".

HAB.—Stale water with decomposing matter in suspension.

Spiromonas angustata, Duj. sp. PL. XV. FIGS. 49–60.

Body elongate, linear, compressed, more or less pointed at the two extremities, five or six times as long as broad, twisted spirally or in a screw-like manner on its longitudinal axis; flagella slender, subequal, inserted close to each other at the apex of the anterior extremity, equalling the body in length, both directed forwards and vibratile when the animalcule is swimming, the inferior one sometimes used for the temporary attachment of the animalcule; contractile vesicle posteriorly located; endoplasm inconspicuous. Length of body 1–2500".

HAB.—Vegetable infusions.

The animalcule as above characterized and here identified with the *Heteromita angustata* of Dujardin, was obtained abundantly by the author at St. Heliers, Jersey, in an infusion of hay with spring water at the end of three weeks' maceration. Although the elongate, screw-like form, with two or three spiral twists, represents the normal aspect of the adult individuals in their free-swimming state, a very considerable range of variation occurs among the units of a large series. This individual variation is dependent not only on the phase of development of the separate monads, but also on the condition of rest or activity that may at the time predominate. In common with *Spiromonas distortum*, the young of this species
show no trace of the spiral convolutions which distinguish the adults, but are simply elongate and compressed; later on a single spiral flexure is developed, and it is not until the most mature and active natatory condition is arrived at that its characteristic highly convoluted contour is attained. In that intermediate phase in which the animalcules exhibit but one spiral twist, the body is comparatively short, about three times as long as broad, with rounded extremities, and presents a considerable resemblance to Perty’s Spiromonas volubilis, last described. A prolonged investigation of this species elicited that it possesses a temporarily fixed as well as an active swimming stage, the animalcules at such time attaching themselves by the extremity of the posterior of the two flagella, and fishing in the surrounding water with the anterior one, after the manner of an ordinary Heteromita or Anisolamia. It was further observed that under these conditions the spiral convolutions were relaxed, sometimes one only being represented, and in others disappearing altogether. On becoming detached and resuming the free-swimming state the spirally convolute contour is again adopted. At the end of a few hours almost the whole adult individuals of the colony under examination were seen to assume an amœboid phase, and to crawl actively over the surface of the glass by the aid of their pseudopodia. Some of these coming in contact with their fellows immediately fused or coalesced, forming subsequently spherical encystments which later on broke up into minute spore-like bodies. The single zooids likewise formed similar but smaller encystments, and dividing by multiple fission into two or four segments only, were subsequently liberated as units resembling the unconvolute earlier stages of the parent monads. The motion through the water of the adult animalcules is regular and even, consisting of progress in a straight line, the body turning on its long axis in a screw-like manner, both flagella actively vibrating in advance. In the younger examples the movements are eccentric and vacillating, the animalcules first advancing straight forward for a short distance, and then turning round and returning to the point from whence they started. Their motion in this respect somewhat resembles that of various species of Vibrio or Spirillum. The so-called Bodo gracilis, merely figured by Stein in his recently published volume, without a word of explanatory text, must undoubtedly be regarded as a synonym of this species.

Genus IV. Phyllomitus, Stein.

Animalcules free-swimming, variable in form, more or less ovate; flagella two in number, produced from the anterior extremity, unequal in length and united to one another throughout their basal portion; no distinct oral aperture.

The single species referred to this genus is figured without an accompanying description in Stein’s recently issued volume, the present diagnosis of both that species and the present newly instituted generic group having to be framed from his delineations.

Phyllomitus undulans, Stein. Pl. XV. Figs. 47 and 48.

Body elongate-ovate, variable in form, three or four times as long as broad; sometimes straight and rounded, and sometimes sharply pointed and recurved posteriorly; flagella united basally for a distance exceeding one-half of the length of the body, forming in this region a ligulate or strap-like prolongation, the shorter flagellum produced separately but a little distance beyond the distal termination of this ligulate prolongation, the longer one fine and undulating continued for a length exceeding that of the entire body; the anterior extremity of the ventral region immediately beneath the insertion of the flagella exhibiting an oval excavation; endoplasm anteriorly
situated; contractile vesicle not clearly indicated. Length 1–1200" to 1–914". Hab.—Fresh water.

The form of the body in this species accords closely with that of the Tetramitus descissus of Perty, it exhibiting a similar indifferently rounded or sharply pointed posterior conformation, and a corresponding excavation beneath the insertion of the flagella; the peculiar character of these last-named organs distinguishes it conspicuously from any representative of the Flagellata hitherto described. Although not indicating the existence of a well-defined contractile vesicle, Stein delineates in his several figures of this animalcule a vesicular-like structure near the posterior extremity, upon which, in the accompanying index, the title of an anal aperture is conferred.

Fam. X. TREPOMONADIDÆ, S. K.

Animalcules naked, free-swimming, entirely asymmetrical; flagella two in number, separately inserted; no distinct oral aperture.

Genus I. TREPOMONAS, Dujardin.

Animalcules free-swimming, exceedingly unsymmetrical in shape, plastic and highly flexible; irregularly oval, from a dorsal aspect; thickened posteriorly, with two anterior, slender, recurved, wing-like lobes as seen in lateral view; sigmoidal with reversed and pointed extremities viewed apically; flagella two in number, alike in form and character, produced from the extremity of each of the lateral lobate processes; contractile vesicle and endoplasm conspicuous; no distinct oral aperture; movements very rapid, gyratory. Inhabiting stagnant water with decomposing organic matter.

Trepomonas agilis, Duj. Pl. XIX. Figs. 1–14.

Body, from a dorsal view (Fig. 12), irregularly oval, broadish anteriorly, more slender and slightly curved posteriorly, with a longitudinal fold towards the left side; in lateral view (Fig. 10), somewhat tongue-shaped, thickest and rounded posteriorly, expanding anteriorly into two symmetrical, laminate, wing-like lobes, which are reflexed backwards to about the centre of the body and terminate each in a single long vibratile flagellum. Apical aspect (Fig. 11) broadly sigmoidal, with a thin hyaline border connecting the recurved points with the thicker body portion; the flagella continuous from the recurved points; endoplasm transparent, enclosing foreign granules; contractile vesicle postero-terminal; endoplasm anteriorly situated. Length of body 1–1125".

Hab.—Marsh water with decaying vegetable substances.

The extraordinarily diverse aspects presented by this animalcule as seen from various points of view, taken together with its minute size and exceedingly active movements in the water, has hitherto presented an almost insurmountable obstacle to its accurate description and delineation. O. Biitschli,* making a careful investigation of this interesting type with the highest available magnifying power and the use of reagents has, however, clearly demonstrated its correct structure and contour, the foregoing diagnosis being framed from his excellent figures and description. The

researches of this author establish the accuracy of Dujardin’s original anticipation that the animalcule possessed two flagella proceeding from the extremities of the recurved lobate processes, although by Perty, Fresenius, and more recently by De Fromentel, a single flagellate appendage only is reported. The figures given by these last-named authorities, representing this form as caliper-shaped or bifid posteriorly, with a single median anterior flagellum, is now shown to be an imperfect interpretation of the lateral view given at Pl. XIX. Fig. 10. By Diesing *Trepomonas agilis* is described as possessing a terminal oral aperture; but Bütschli, while noting the presence in the endoplasm of enclosed foreign particles, entirely failed to discover the existence of such a structure. Under these circumstances it seems desirable to refer this type, at all events provisionally, to the Pantostomatous section of the Flagellata, the food-particles observed being probably incepted at any point of the periphery. A circulation or cyclosis of the inner substance of the endoplasm is recorded of this form by Bütschli, and has been witnessed by the author, which corresponds broadly with that which obtains in the higher Ciliate type *Paramecium bursaria*. Two animalcules joined to one another posteriorly by a slender, filamentous extension of the body-sarcode, representing an advanced phase of the process of longitudinal fission, was observed on one occasion. The correspondence that subsists between the contour of this type, as seen in lateral aspect, Fig. 11, and the fission-stage of *Ancyromonas sigmoides* (see Pl. XIII. Figs. 51 and 52), is highly remarkable.

Stein, in his recently issued volume, gives a very exhaustive series of illustrations of the polymorphic contours presented by *Trepomonas agilis* under varying conditions of attitude or flexure, the more important of which are here reproduced. The young of this type are, in accordance with the same authority, provided with three or four long, slender flagella, presenting under such conditions the appearances delineated at Pl. XIX. Figs. 13 and 14.

Fam. XI. POLYTOMIDÆ, S. K.

Animalcules symmetrical, free-swimming or temporarily adherent, illoricate, but with a more indurated membraniform cuticular envelope; flagella terminal, two in number, of equal size; no distinct oral aperture; multiplying by endogenous subdivision.

Genus I. POLYTOMA, Ehrenberg.

Animalcules biflagellate, free-swimming or temporarily adherent, more or less ovate, persistent in shape, possessing a distinct investing membrane; flagella of equal length, projecting from the anterior extremity; contractile vesicles and endoplasm conspicuous, inhabiting water containing decomposing animal matter. Increasing by endogenous multiple fission and by the production of macro- and micro-spores. No distinct oral aperture.

The type-form of this genus, the *Polytoma uvea* of Ehrenberg or *Monas uva* of Müller, is evidently identical with the so-called “biflagellate or acorn-monad” figured and described by Messrs. Dallinger and Drysdale in the ‘Monthly Microscopical Journal’ for December 1874. A considerable difference of opinion has existed as to whether *Polytoma*, as represented by this type, should be rightly referred to the animal or vegetable kingdom, the balance of evidence being now, however, entirely in favour of the first alternative. There is no secretion of chlorophyll within the endoplasm as in the ordinary phytozaa, and the investing membrane refuses to become blue under the action of iodine, as it would if composed of cellulose. Ehrenberg further reports that the animalcules will ingest coloured matter, such as indigo, and figures artificially fed examples in his work. This last circumstance, combined with the constant presence of conspicuously developed
contractile vesicles, demonstrates the entire compliance of these organisms with the formula adopted at the commencement of this work for the distinction of all typical Infusoria.

Polytoma uvella, Ehr. Pl. XV. Figs. 67-78.

Body ovate or oblong, equally rounded at the two extremities, or slightly more pointed at the anterior one, invested by a delicate hyaline membranous cuticle; flagella inserted close to one another at the anterior extremity, of equal size, exceeding the body in length, having apparently a small bead-like or fusiform inflation at their point of origin, such appearance being produced by a minute loop-like basal flexure; this basal region of the flagella; soft and adhesive, enabling the animalcules to attach themselves at will to foreign objects; contractile vesicles two in number, anteriorly situated; endoplasm central, spherical; endoplasm of the posterior half of the body usually more coarsely granulated. Length of body 1-1200" to 1-800".

HAB.—Fish and other animal macerations.

In describing the form, as quoted overleaf, under the title of "the biflagellate or acorn-monad," Messrs. Dallinger and Drysdale appear to have been unaware of its identity with the Polytoma uvella of Ehrenberg, and of the results of Schneider's and Perry's investigations. These last-named authorities, while by no means supplying a complete and exhaustive account of its reproductive history, assist materially in the interpretation of certain phenomena, which have been left unexplained by our fellow countrymen. As first made known by Schneider, and since shown by Messrs. Dallinger and Drysdale, the animalcules increase rapidly by a process of multiple fission, caused by the first dividing into two, and then into four, eight, or even sixteen segment-masses of the entire protoplasmic mass enclosed within the external hyaline cuticular membrane, and quite independently of that structure. These divided portions assume the shape and aspect of the parent monad, the flagella often perforating and protruding through the cuticle of the latter, as shown at Pl. XV. Fig. 73. The organism now swims about with its contained young for a longer or less duration of time as an apparently compound organism.—It was this pseudo-compound phase, indeed, that Ehrenberg regarded as the normal one, and upon which he conferred its characteristic title of Polytoma. Subsequently, each of these subdivided portions breaking through the investing membrane of the parent monad, assumes an independent existence, leaving the latter as an empty and lifeless cyst. While the products of this multiple fission process may continue increasing in a similar manner for many generations and without the intervention of the coalescence or genetic union of two zooids, it has been shown by Messrs. Dallinger and Drysdale that there is yet another mode by which the perpetuation of the species is asexually accomplished. In certain examples under examination it was observed by these authorities that the posterior portion of the body was almost filled with granular masses of protoplasm, which conveyed to this region a roughened acorn-cup-like aspect as compared with the smooth and hyaline anterior portion; carefully watching them it was found that in the midst of their swiftly moving course these acorn-like zooids would suddenly discharge the entire contents of the posterior region as separate granular fragments into the surrounding water, as shown at Fig. 75. Each of these fragments thus liberated was amorphous in form, more or less agglomerated and perfectly transparent. Examined attentively with the aid of a magnification of 2500 diameters and upwards, minute dots were next seen to make their appearance in these granules, which increasing in size, exhibited active vibratory movements and were ultimately released as minute bacterium-like bodies. The growth of these liberated particles within a space of four or five hours to monads identical in size and structure with the parent form, was subsequently
GENUS POLYTOMA.

ascertained. A third or true genetic form of reproduction dependent on the intimate fusion or coalescence of two individuals followed by encystment and the breaking up of the amalgamated zooids into countless almost invisible spores (see Pl. XV. Figs. 77 and 78), as already described of Monas Dallingeri, Cercomonas typicus, and Heteromita rostrata, completes the life-cycle of this remarkable species as observed by these indefatigable investigators.

A few structural peculiarities of this type referred to by Messrs. Dallinger and Drysdale, demand brief notice. The so-called "snapping eye-spots" situated in the anterior region of this form, and reported to be present in many other monads examined by them, though they failed to determine their precise import and function, represent undoubtedly the characteristic contractile vesicles already recognized by Schneider and other earlier writers. Under certain conditions the two anterior flagella were further pronounced by these investigators to be replaced or supplemented by two knob-like structures, mounted on slender pedicles, and to which phase of the monad they therefore applied the title of the "clubbed condition." It was at first supposed that this condition was intimately connected with some special reproductive process, the question ultimately, however, being left undecided. Schneider, nevertheless, had previously maintained that the knob-like processes represented the flagella as withdrawn or shortened previous to encystment. Even under normal conditions the existence of fusiform or pear-shaped inflations of the bases of the flagella is recorded, these inflations being further interpreted as playing an important part in the function of natation, and as possessing apparently a muscular property. The swimming motions of Polytona are described by Messrs. Dallinger and Drysdale as very graceful and swallow-like; the flagella being thrown out in the manner of a swimmer's arms and made to meet at the posterior end of the monad; these appendages can likewise, they report, be used in various other ways, producing a rolling-forward motion, a gyration horizontal one, or even a longitudinal revolution.

Quite recently, January 1880, the author had the opportunity of examining living samples of Polytona uvella as developed abundantly in animal macerations at the Biological Laboratory, South Kensington. The data thus independently derived have thrown an entirely unexpected light on the phenomena previously recorded, concerning the so-called knob-like or pyriform inflations at the base of the flagella, as observed by Schneider and Messrs. Dallinger and Drysdale. It has been definitely ascertained by both the examination of living monads and of examples killed with iodine and osmic acid, that what these authorities took for independent knob-like or fusiform developments are actually minute loop-like flexures of the basal region of the flagella, as shown in Figs. 67-69 of Plate XV. The substance of the flagella throughout this region is softer and more adhesive than in the remainder of their length, and it is by this loop-like flexure that the animalcules attach themselves to the glass or other neighbouring objects as first observed by Schneider, and may thus ride securely anchored, during the passage around them of even a considerably forcible current. It is certainly a very remarkable circumstance that this capacity of attaching themselves, so abundantly displayed in the specimens recently examined, should have entirely escaped the many hours' observation of Messrs. Dallinger and Drysdale, who have described them only as motile or free-swimming animalcules. In both the examples examined by the author on the occasion quoted, and still more recently, it was observed, indeed, that the attached condition is the more normal one, but few, unless purposely disturbed, exhibiting their natatory properties two minutes after their transfer to the field of the microscope. The existence of the loop-like flexures at the bases of the flagella, discovered by the author, explains readily the several apparently anomalous features concerning the type, noticed in the accounts given by previous investigators; thus the so-called "clubbed" condition of the animalcule, as reported by them, was repeatedly recognized, but was demonstrated to be the optical image, produced under high magnification, of the basal portion of the flagellum with its loop-like flexure only being in focus. Under slightly modified conditions, again, the loop-like flexures and the remaining length of the flagella being clearly visible, the divarication of this latter portion may
be at such an angle that, as shown at Plate XV. Fig. 67, the basal flexure and terminal portion may appear to be separate structures, the former presenting an independent knob-like aspect. Lastly, where the distal lengths of the flagella and their basal flexures are both in focus, and apparently continuous with each other, these flexures may be coiled so closely beneath the anterior region of the animalcule's body, as to present the aspect of fusiform or pyriform inflations of the basal region of the flagella, as first interpreted by the two authorities here quoted. When the animalcules are treated with osmic acid or iodine, they roll over and over helplessly in the water, every portion of their organization being brought successively into focus, and the true significance of the previously imperfectly observed phenomena, as here explained, may easily be verified. Figs. 68 and 69 of the accompanying plate are delineated from examples submitted to this treatment. The two anterior so-called "snapping eye-like structures" reported by Messrs. Dallinger and Drysdale of this type, were immediately identified by the author with the normally developed and highly characteristic contractile vesicles.

Stein includes a long series of figures of this species in his recently published volume, the same, however, apparently containing but little that is new. One or more dark, granular, eye-like pigment-spots are shown in some, but not in all, of these figures, such spots being moreover located indifferently in separate animalcules at either the anterior or posterior extremity of the body. No indication of the characteristic loop-like flexure of the flagella or of the possession by the animalcules of a capacity to attach themselves, as here recorded, is given in Stein's figures or accompanying index.

The two forms described by Perty under the respective names of Polytoma ocellata and P. virens, cannot be regarded as otherwise than local or transitional variations of P. uvella. Diesing, nevertheless, has proposed to institute a new generic and specific title, Glenopolytoma typicum for that variety, P. ocellata, in which a red pigment-spot is present at the anterior extremity.

Fam. XII. PSEUDOSPORIDÆ, S. K.

Animalcules naked, repent or natatory; flagella two in number, of even size; no distinct oral aperture.

Genus I. PSEUDOSORA, Cienkowski.

Animalcules free-swimming or repent, plastic and changeable in form, typically more or less ovate or globose; the anterior extremity bearing two long, equal-sized flagella; food incepted at any point of the periphery; endoplasm and contractile vesicles conspicuous.

The *Pseudospora volvocis* only of Cienkowski is retained in the present genus, the two other forms, referred to it by that authority under the titles of *Pseudospora parasitica* and *P. nitellarum*, being in no way distinct from the ordinary members of the genus *Monas*, to which they are here referred. Food-particles would appear to be incepted at any point of the periphery, otherwise the features afforded by the plasticity of the body-sarcode and character of the flagella correspond considerably with those exhibited by the stomatode genus *Zygodesmis*.

Pseudospora volvocis, Cienk. Pl. XV. Figs. 42 and 43.

Body ovate or globose, often amœbiform; flagella fine, equal in size, exceeding the body in length; contractile vesicles minute, three in number, scattered; endoplasm spherical, subcentral. Length 1–1250µ.

HAB.—Fresh water, as a parasite of *Volvox globator*.

*"Revision der Prothelminthen," 1866."
According to Cienkowski* this species plunders the contents of Volvox globator in a manner somewhat identical with that pursued by Colpodella pugnax with relation to Chlamydomonas pulvisculus. Boring its way through the outer envelope of that protophyte, it creeps about on its inner surface, gradually devouring all the green cellular elements and daughter-cells. During the process it presents a semi-amoeboid aspect, but retains the two long natatory flagella; under these auspices it would seem to exhibit more affinity with the genus Mastigamaba, and might therefore perhaps be appropriately relegated to the order of the Rhizo-Flagellata. Subsequently the flagella are completely withdrawn and the animalcule forms a double-walled encystment, the further development of which was not followed.

C.—PANTOSTOMATA-POLYMASTIGA

(Flagellate appendages three or more in number).

Fam. XIII. SPUMELLIDÆ, S. K.

Animalcules naked, free-swimming or attached; flagella terminal, three in number, unequal, one long and two short; no distinct oral aperture.

Genus I. SPUMELLA, Cienkowski.

Animalcules minute, sometimes free-swimming but normally attached by a slender thread-like pedicle, more or less spherical or ovate in their sedentary state, but exceedingly plastic and changeable in shape in their free-swimming condition; flagelliferous system consisting of one long and two short rudimentary flagella which originate close to each another near the centre of the anterior border; endoplasm and one or more contractile vesicles usually conspicuous; no distinct oral aperture, solid food-particles being incepted at all parts of the periphery. Inhabiting fresh and salt water, and abundant in infusions.

Those forms only are retained as representatives of the present genus that correspond structurally with the Spumella vulgaris of Cienkowski† (Monas guttula Ehr.), characterized by the possession of one long and two comparatively minute flagellate appendages. The monoflagellate types referred to it by O. Bütschli, under the titles of Spumella termo and S. neglecta, are necessarily relegated to the generic group Oikomonas, with whose representatives, as also with those of Physomonas and Amphimonas, except strict attention is paid to the character of the flagelliferous elements, the several species of Spumella are liable to be confounded.

Spumella guttula, Ehr. sp. Pl. XIV. Figs. 46–52.

Body perfectly globose in its sedentary condition, ovate, pyriform or elongate in its free-swimming state; flagellate appendages consisting of one long and two very short rudimentary flagella, the former extended rigidly and arcuately, the latter tremulous; endoplasm transparent, finely granulate, enclosing near the anterior border a short, straight, linear, pigmentary, or more densely granular band; contractile vesicle single, located near the

centre of the lateral periphery; endoplasm situated in the median line, towards the anterior extremity. Diameter of spheroidal zooids 1–2500".

HAB.—Pond water.

Stein* proposes to identify this type with both the Monas guttula of Ehrenberg and the more recently introduced Spumella vulgaris of Cienkowski. It would seem just possible that the first-named identification is correct, but no mention is made by Ehrenberg of its most characteristic fixed existence and attachment by a special caudal filament, and which would undoubtedly, if recognized, have influenced that authority to relegate the animalcule to his caudate genus Bodo. Stein agrees with Cienkowski in alloting to this form the presence of two minute supplementary flagella at the base of the more conspicuous axial one; he further figures what he interprets to be the genetic union between a normal sedentary, and a minute motile zooid, the latter attaching itself to one side of the larger one, and becoming absorbed into its substance, the phenomena corresponding with those exhibited during the genetic union of the larger sedentary and minute migrant zooids of Vorticella, first discovered by this same authority and described later on. In specimens of this type, recently examined by the author, obtained in pond water containing Acineta mystacina and Salpingaea gracilis, the presence of the one long and two rudimentary flagella was fully certified, as also the existence of the linear furrow-like mark near the anterior border, interpreted by Stein and Cienkowski as representing a distinct oral aperture. That no such ingestive function can be assigned to it was however conclusively demonstrated through the witnessing on numerous occasions of the inception of solid food-particles at the most diverse regions of the periphery. As in the case of Oikomonas, Amphimonas, Anthophyza, and numerous other Pantostomatous Flagellata already described, such food-inception was manifested by the temporary rupture of the peripheral wall of the animalcule's body at whatever point against which the food-particle was thrown by the flagellum, accompanied by the simultaneous outflow of the softer inner sarcode which enveloped and secured the welcome morsel. Under such circumstances there can be but little doubt that this so-called oral furrow is, as in the case of Goniomonas truncata, as interpreted by Blütschli, a mere linear granular deposition corresponding morphologically with the red or other coloured pigment-spots common to Euglena and various ordinary Flagellata. Such a granular pigimentary interpretation entirely accords with the decision arrived at by the author in connection with the present species, after carefully submitting it to the highest available magnifying power. It would seem to be by no means improbable that Stein's representation of the presumed coalescence of a minute free-swimming zooid with a larger sedentary one, as here reproduced, Plate XIV. Fig. 49, might be more accurately interpreted as an example of the ingestion of a foreign food-particle at the lateral periphery.

Spumella vivipara, Ehr. sp. Pt. XIV. Figs. 34–36.

Body when attached usually obovate, widest and rounded anteriorly, tapering to a point at its posterior extremity; exceedingly plastic and changeable in shape, ovate, spheroidal, or elongate in its free-swimming state; one long axial and two short lateral flagella; endoplasm transparent, enclosing innumerable constantly vibrating refringent corpuscles; a short linear pigment-band or furrow-like mark situated close to the anterior border; pedicle short, scarcely equalling the body in length; contractile vesicle single, located near the centre of the lateral border; endoplasm median, anteriorly situated. Length 1–1000" to 1–620".

HAB.—Fresh water and infusions.

* * Infusionsthiere,' Abth. iii., 1878.
This species, originally described by Ehrenberg under the title of *Monas vivipara*, is distinguished more particularly by the presence of the innumerable moving corpuscles enclosed within the substance of the endoplasm, and which were mistaken by that authority for its living progeny. Stein, who has recently figured it in connection with the same name, has added the fuller details of the flagella, mode of attachment, and positions of the endoplasm and contractile vesicle here recorded. The author has recently encountered an animalcule closely resembling the present form in hay infusions, it being of the same size and enclosing similar motile corpuscles within the endoplasm; the endoplasm was, however, in these instances, situated to the rear of the contractile vesicle. The ingestion of food was observed on numerous occasions, a film of sarcode being thrown out at such times and enveloping the captured particle. This film was projected indifferently from various parts of the anterior border, and sometimes simultaneously from two separate portions of the periphery. In no instance could the linear pigment-band or so-called oral ledge or furrow, as indicated in Stein's drawings, be detected, and which circumstance, together with the variation in the position of the endoplasm, favours the opinion that we have in this last-named instance a closely allied but specifically distinct variety.

Fam. XIV. TRIMASTIGIDÆ, S. K.

Animalcules naked, free-swimming or temporarily adherent; flagella three in number, equal or subequal, inserted close to one another; no distinct oral aperture.

GENUS I. CALLODICTYON, Carter.

Animalcules naked, entirely free-swimming, more or less ovate but plastic and somewhat variable in form; endoplasm highly vacuolar or cancellate, presenting a reticulate appearance; flagella three in number, similar in size and character, originating close to each other near the centre of the anterior border; no distinct oral aperture, all parts of the periphery being equally capable of ingesting food-substances.

Body subpyriform, straight or slightly curved, from one and a half to twice as long as broad, widest anteriorly, tapering towards the posterior end, which is sometimes sharply and sometimes obtusely pointed and bifid at its extremity; flagella slender, equal in length to about one-half that of the body, inserted within a small depression in the centre of the anterior border; endoplasm transparent, divided up by innumerable equal-sized spherical vacuoles so as to present a reticulate or cellular aspect; endoplasm spherical, anteriorly situated; no distinct contractile vacuole. Length 1–770". HAB.—Fresh water with *Euglena*: Bombay (H. J. C.).

This singular animalcule is figured and described under the above title in Mr. Carter's account of the "Fresh and Salt-water Rhizopoda of England and India," in the 'Annals of Natural History' for April 1865. Its plastic nature, and capacity of ingesting food at any portion of its periphery, as in the case of Amoeba, has induced this authority to refer the type to the section of the Rhizopoda, but it is very evident that its rightful position is among that newly instituted Pantomatomous division of the Infusoria Flagellata as delimited in this treatise. The voracity of this type, as evidenced by its discoverer, is very remarkable, organisms
equal to or even exceeding itself in size being indiscriminately seized and pressed within the substance of its yielding reticulate body-sarcode. In one instance, Mr. Carter figures a large Cremenula thus incepted, while in another, Pl. XIX. Fig. 17, the animalcule has enclosed the central portion of a filament of Oscillatoria, the two ends of which are protruding from the opposite poles of the creature's body. Although the evenly vacuolar or reticulate character of the parenchyma or endoplasm of Callodicyon would appear to find no exact counterpart among the ordinary representatives of its class, a near approach in this respect obtains in Noctiluca and Leptodiscus among the Stomatode Flagellate forms, and in Trachelius and Loxodes among the Ciliata. Such an open vacuolar character of the parenchyma would seem to obviate the necessity for a contractile vesicle, the presence of which structure Mr. Carter was unable to detect.

Genus II. TRICHOMONAS, Donné.

Animalcules free-swimming, soft and plastic, ovate or subfusiform, bearing at the anterior extremity two long subequal flagella, a third supplementary one depending from the posterior extremity; a toothed or lobate undulating membrane developed down one lateral border, which presents under insufficient magnifying power the aspect of a fringe of cilia; no distinct oral aperture. Habits endoparasitic.

The illustrations of *Trichomonas batrachorum* given by Stein in the third volume of his 'Infusionsthiere,' though unaccompanied by any descriptive text, have necessitated not only the formulation of a new generic diagnosis, but also the transfer of the genus from the monomastigate to the polymastigate section of the Flagellata. As originally described by Donné and embodied in the works of Dujardin and Perty, *Trichomonas* was represented as possessing a single anteriorly situated flagellum only, supplemented on one lateral border by a conspicuous fringe of cilia. As now shown by Stein, in the case at all events of the above-named species, there are no less than three flagellate appendages, while the presumed lateral fringe of cilia is found to be a delicate notched undulating membrane, closely resembling the membraniform border that constitutes the sole organ of locomotion in the genus Trypanosoma. An oral aperture, or rather the presumed position of such a structure, is indicated in one of Stein's figures, though by no means with sufficient distinctness to permit of the acceptance of the organism as an undoubted stomatode type. Such being the case, its provisional retention among the ordinary Pantostomata has been decided on.

Trichomonas batrachorum, Perty. Pl. XIX. Figs. 30-32.

Body subfusiform, widest centrally, pointed at each extremity, but most attenuate posteriorly, two or three times as long as broad; two long slender flagella produced from the apex of the anterior extremity, a similar single one apparently originating at a little distance from the posterior termination; a more or less conspicuous toothed or lobate undulating membrane developed down one lateral border, and a raised keel-like line down the opposite one; endoplasm anteriorly located; contractile vesicle situated at a short distance from the posterior extremity. Length 1–2000" to 1–640".

HAB.—Intestinal canal of the common frog and toad.

The above diagnosis and accompanying illustrations of this species are drawn up and reproduced from the excellent figures of the type included in Stein's lately issued volume. In the absence of the forthcoming descriptive text, one or two
points have to remain undecided, these relating chiefly to the character and number of the flagella. In one instance as many as three, but in all others only two of these appendages are produced from the anterior extremity. It is also somewhat difficult to decide whether the so-called posterior flagellum is actually developed from this region, or is merely a reflected member of a single anteriorly inserted series.

Trichomonas vaginalis, Duj. PL XIX. Figs. 33 and 34.

Body irregularly ovate, tuberculate, soft and plastic, and changeable in shape, often adherent by a gelatinous tail-like prolongation of the posterior extremity of the body; flagellum thicker at its base, fine and slender anteriorly, two or three times the length of the body, supplemented apparently by a lateral fringe of large and conspicuous cilia; endoplasm vacuolate. Length of body 1–2500". HAB.—Vaginal mucus.

This species was first observed in decomposed human vaginal mucus by M. Donné, he communicating the circumstance to Dujardin. The zooids occurred in aggregated groups or as isolated individuals which readily adhered to the glass object-carrier, or other fulcrum of support, by a glutinous prolongation of the posterior extremity, their movements when so attached being oscillating. It has been suggested by some authorities that the objects thus observed by Donné were merely singly detached or agglomerated cells of ordinary ciliated epithelium; the possession, however, of a distinct flagellate appendage, as indicated in Dujardin's drawings, would seem, pending further investigation, to justify its provisional inclusion among the members of the present organic group. Neither the diagnosis here given of either this or of the succeeding species is to be accepted as complete, they being constructed from the very imperfect descriptions and figures placed on record by investigators who had not optical appliances suitable for their exhaustive examination. With such assistance it will probably be found that, as in Trichomonas batrachorum, the apparent lateral fringe of cilia is in reality an undulating membrane, and that the single flagellate appendage hitherto observed is supplemented by others of like kind.

Trichomonas limacis, Duj.

Body ovoid, smooth, pointed at each extremity; flagellum slender throughout, about twice the length of the body; a lateral fringe of cilia apparently extending from the base of the flagellum more than half-way to the posterior extremity; endoplasm vacuolar; movements active, rotating on its axis. Length of body 1–1650".

HAB.—Intestinal tract of Limax agrestis.

Genus III. DALLINGERIA, S. K.

(Nom. prop., Dallinger.)

Animalcules free-swimming, more or less ovate, persistent in form, having a single antero-terminal, and two oppositely placed lateral flagella, the latter adhesive at their distal extremities, permitting the zooid to temporarily anchor itself to any chosen spot after the manner of Heteromita and Anisonema. Endoplasm conspicuous; no distinct oral aperture. Inhabiting animal macerations.

This new genus is established for the reception of the animalcule figured and described by the Rev. W. H. Dallinger, in a memoir published in the 'Proceedings
of the Royal Society' for May 1878, as a "minute septic organism," no technical name being given nor any attempt being made to identify it with any previously described form. It being the only type, among the many so painstakingly investigated by Mr. Dallinger, in company usually with Dr. Drysdale, that represents both a new generic and specific form, the author derives much pleasure from bestowing upon it technical titles that shall serve to perpetuate their names in connection with this group of organisms.

As in the case of the numerous other monadiform beings referred to in this volume which have formed the subject of that authority's investigations, the entire life-cycle, as hereafter related, has been traced out. So far as can be at present determined, this special type would appear to exhibit a close affinity with the representatives of the genus *Heteromita*, from which, however, it is at once distinguished by the presence of two lateral instead of a single ventral anchoring filament. No reference being made to the existence of a distinct oral aperture or the presence of incepted food-granules, it must be provisionally assumed that the animalcule feeds by endosmosis, after the manner of the Opalinidae, upon the nutritive fluids in which it takes up its residence.

Dallingeria Drysdali, S. K. Pl. XIX. Figs. 35–41.

Body elongate-ovate, about three times as long as broad, widest and rounded posteriorly, constricted centrally, the anterior region abruptly narrowed and neck-like; flagella subequal, long and slender, about twice the length of the body, the two lateral ones produced on each side immediately behind the narrower neck-like region; endoplast posteriorly located. Length of body 1–4000". HAB.—Animal macerations.

The life-history of this species, as traced by the Rev. W. H. Dallinger, accords broadly with that of *Monas Dallingeri, Heteromita rostrata*, and other flagellate types upon which he and Dr. Drysdale conjointly have so successfully concentrated their attention. Multiplication by fission represents the normal and most common mode of increase. This process is preceded in the first instance by the splitting of the anterior flagellum (see Plate XIX. Fig. 37), the line of segmentation extending thence through the longitudinal axis of the body, including the subdivision of the endoplast, the missing lateral filament being reproduced by the attenuation of the sarcodine film which lastly unites the eventually separated bodies. A period of from four to seven minutes is occupied in the completion of this act of fission, which may be repeated at intervals of three minutes for the duration of an hour. During the next two hours the same process proceeds at intervals of from seven to ten minutes, while after this, fission is more rare and sluggish and interrupted by irregular intervals varying from twenty to as much as forty minutes. The phenomenon of longitudinal fission may, in this manner, be continued, commencing with a newly developed individual, for a space of from five to seven hours, when death most usually ensues. Much more rarely, on an average of three cases out of nine, however, it was found that the monads at the end of about three hours of continuation of this cleavage process, underwent a complete metamorphosis. In these instances the two lateral flagella contracting, first assume a knotted or clubbed aspect, and the body, losing its normal ovoid form, becomes irregularly lobate around the margin and semi-amceboïd. The two lateral flagella are ultimately entirely withdrawn, and the body, assuming a still more regularly ovate contour than it originally presented, being without the central constriction, progresses through the water as a simple monoflagellate organism, in all ways identical with the ordinary representatives of the genus *Monas*. The endoplast meanwhile increases largely in its proportions, and occupies a more posterior location, while, in addition, a belt-like granular zone makes its appearance, encircling the exact centre of the body, as shown at Pl. XIX. Fig. 38.
Swimming among the ordinary triflagellate members of the species the metamorphosed monads were observed to attach themselves to one of these, the two then swimming off and becoming by degrees completely fused with one another; all the flagella were now entirely retracted, the conjoined bodies exhibiting first an irregularly lobate or amœboid aspect, and finally a quiescent encysted state. The cysts thus formed, Fig. 39, were of an elongate-ovate or fusiform shape, and apparently devoid of all structure. After an interval of from three to five hours the cysts were seen to burst or collapse, releasing a cloud of exquisitely minute spores, hardly appreciable, and then only as the most minute specks, under a magnification of 5000 diameters. In five hours after their emission from the cyst the sporular elements grew to the size and contour of the parent form, the first traces of the characteristic lateral flagella having made their appearance as minute points at the end of the first two hours, before any movements had commenced, and while each individual appeared under the magnification quoted as but little more than a mere elongate speck. The habits of the animalcule as related by Mr. Dallinger are remarkable. When swimming it progresses through the water rapidly, in a direct line or in graceful curves, arresting, however, or reversing its course abruptly at any moment. On these occasions, one or both of the two lateral flagella are brought into action, and extended in an arm-like manner in place of remaining closely adpressed to the side with their free extremities trailing, as is more usual when a straight uninterrupted path is pursued. In all these movements the animalcule apparently exhibits a complete volitional control over the movements of these flagellate appendages and in the determination of its course.

The highly characteristic sedentary condition of the adult form remains to be described. Like Heteromita, Anisonema, and other Flagellata, this type, as already mentioned, temporarily anchors itself at will to any chosen spot, its moorings, however, being rendered doubly secure by the utilization, for this purpose, of the two lateral flagella in place of the single gubernaculate one employed by the foregoing forms. In this "anchored" condition the animalcule still exhibits vigorous movements, which are of a most remarkable character. In Anisonema, motion when at anchor consists, in its most actively motile state, of a swaying to and fro of the body only, after the manner of a pendulum. In Dallingeria, according to its discoverer, it takes the form of a rapid springing up and down, much as in Heteromita rostrata, the two adherent flagella being thrown, on the return of the body, into two spiral coils, which are once more relaxed by the upward spring. In the performance of these evolutions the body describes in the course of its descent the arc of a circle, striking with great rapidity and proportionate force, hammerwise, upon the point represented by the outstretched limit of reach of the anchoring flagella. It is further affirmed that this hammering action is always manifested in presence of decomposing organic matter, the blows being levelled against it with the apparent purpose of breaking up this material, and evidently contributing to or hastening such a result. Should the animalcule be found to possess an oral aperture, or other means of appropriating in a substantial form the fruits of its Vulcanic labours, this interpretation of its movements might be accepted, but in the absence of any such demonstration the author is scarcely prepared to regard its reported pulverizing accomplishments as other than fortuitous.*

Experiments, conducted with great skill and care by Mr. Dallinger, in order to

* In the accompanying illustration the letters a and b of Fig. 35 denote the positions successively maintained by a zoid with relation to its base of attachment, through the coiling and uncoiling of the lateral flagella. By accident, the ruptured cyst discharging spores, Fig. 40, is placed at the point upon which the body of the animalcule would strike on the full extension of the spirally coiled appendage; repeated blows delivered in this fashion would doubtless have the effect of breaking the cyst and scattering the spores in the manner indicated. It might be suitably suggested as an alternative to the food-pulverizing interpretation arrived at by Mr. Dallinger, that the characteristic movements of these animalcules are intimately connected with such an artificial liberation and distribution of these spores.
ascertain the respective thermal death-points of the adult monad and its spores, elicited that the former succumbed at a fluid temperature of 142° Fahr., while the spores successfully resisted the very considerable one of 220° Fahr. of fluid heat, and the still higher one of 248° Fahr. if submitted to dry heat.

Genus IV. Trimastix, S. K.

(Greek, *treis*, three; *mastix*, lash.)

Animalcules naked, entirely free-swimming, more or less ovate or pyriform, with a laterally produced membranous border; flagella three in number, anteriorly inserted, one vibratile directed in advance, two reflected and trailing posteriorly; endoplast and contractile vesicle conspicuous; no distinct oral aperture.

Body subpyriform, rounded and inflated posteriorly, the pointed and attenuate anterior extremity curved slightly towards the ventral aspect; the lateral border produced on the right-hand side, extending from the anterior to the posterior extremity; flagella subequal in size and character, about twice the length of the body, the anteriorly directed flagellum vibratile throughout its length, one of the reflected ones free, the other retained towards its centre by the angle formed between the body-wall and lateral membrane, its length between this region and its point of insertion at the apical extremity constantly vibratile; contractile vesicle anteriorly located; endoplast spherical, adjacent to the posterior extremity. Length 1–1425".

HAB.—Salt water with decaying vegetation.

This species was obtained by the author in November 1878, at St. Heliers, Jersey, in a vessel of sea-water containing *Fucet* in an advanced state of decomposition, a thick Bacterial pellicle in the gelatinous or "zooglæa" condition being present on the surface. While the general form, number, and disposition of the flagella correspond to some extent with those of *Dallingeria*, it differs conspicuously from that and all other types hitherto described in the development of the remarkable lateral border, and in the peculiar comportment of one of the posteriorly reflected flagella with relation to it. As first seen, it was premised that the anterior portion of this appendage was an independent undulating membrane, analogous to that possessed by *Trypanosoma* or *Trichomonas*, but its continuity with the portion produced beyond the posterior extremity was ultimately traced. The membranous lateral border, imparting to the animalcule a scroll-like aspect, or more correctly, perhaps, that of a convoluted shell, is of comparatively firm consistence, and was not observed to exhibit any variation in its contour. Although not represented in any previously known member of the Flagellata, a somewhat similar lateral membranous expansion occurs in the Holotrichous forms *Lembrus* and *Proboscilla*. It was supposed that the vibratile portion of the reflected flagellum might be connected with the office of conducting food-particles to a distinct oral aperture. No such orifice, however, was observed, nor the inception of food-substances at any part of the periphery.

Fam. XV. Tetramitidæ, S. K.

Animalcules naked, entirely free-swimming; flagella usually four, rarely five, in number, inserted close to one another, near the centre of the anterior border; no distinct oral aperture.
GENUS TETRAMITUS.

GENUS I. TETRAMITUS, Perty.

Animalcules naked, free-swimming, plastic and changeable in form, usually more or less conical and tapering posteriorly, with a truncate anterior margin; flagella four in number, inserted close to each other at some point of the frontal border. No distinct oral aperture; contractile vesicle and endoplast conspicuous. HAB.—Stale water and organic infusions.

This genus was instituted by Perty, 'Kleister Lebensformen,' 1852, for the reception of two closely allied forms, Tetramitus rostratus and T. descissus. By several authors, including more notably Diesing and Bütschli, it has been assumed that the genera Pyramimonas of Schmarda and Chloraster of Ehrenberg, include all the essential characteristics of the later one instituted by Perty, and which consequently possesses no claim for recognition. A reference to Schmarda's original figures and description of his type-form of the genus Pyramimonas, fortified by an intimate acquaintance with a closely-allied species, has fully satisfied the author, however, that the animalcules investigated and described by Perty represent an entirely distinct generic form, his title being consequently retained in this treatise. This decision, previously arrived at, has been entirely endorsed in Stein's recently published volume, and in which, indeed, all three genera, Tetramitus, Chloraster, and Pyramimonas, are admitted.

Body soft and plastic, subpyriform, compressed, tapering and attenuate posteriorly, the frontal border abruptly truncate, with a small spout-like projection at its lower angle; a shallow groove extending from this point towards the posterior extremity; flagella subequal, slender and flexible throughout, exceeding the body in length, inserted into the small conical projection of the truncate frontal border; contractile vesicles two in number, situated close to each other near the base of the flagella; endoplast oval, central. Length of body 1-1000" to 1-900".

HAB.—Standing water and animal macerations.

This species, representing the Tetramitus rostratus of Perty and Fresenius, and the Pyramimonas rostrata of Diesing, is beyond doubt identical with the so-called "Calycine Monad," figured and described by Messrs. Dallinger and Drysdale in the 'Monthly Microscopical Journal' for May 1871. Its life-history, as elicited by the investigations of these authorities, coincides broadly with that of Heteromita rostrata, described on a previous page. Multiplication by longitudinal fission, accompanied by the temporary assumption of a softer semi-plastic state, represents the ordinary mode of increase, and has been already recorded by Perty. In this process the subdivision of the cone bearing the four flagella takes its share, the two newly developed zooids possessing at the time of separation only two flagellate appendages; these however subsequently divide rapidly in half, and thus secure to the animalcule its full complement. The more important phenomena of increase, through the genetic union of two animalcules followed by encystment and the breaking up of the amalgamated bodies into dust-like spores, was successfully traced through its various phases. In a space of nine hours the minute dust-like spores attained the characteristic aspect of the parent monads, and were simply slightly inferior to them in size. The individual zooids preparatory to and during the act of coalescence assume an altogether irregular and remarkable contour (see Pl. XIX. Figs. 44 and 45). The anterior portion bearing the four vibratile flagella alone retains its original outline, the whole posterior portion of the body protruding bluntly lobate pseudo-
ORDER FLAGELLATA—PANTOSTOMATA.

podic processes by the aid of which it is enabled to creep about after the manner of an *Amoeba*. Messrs. Dallinger and Drysdale further add that when in this amoeboïd condition they rapidly devour such living or dead Bacteria as they may chance to come across, ingesting them as *Amoeba* do at any point of their periphery. The two rhythmically opening and closing so-called "eye-like spots" referred to by these same writers as being constantly present at the anterior extremity of the animalcules, evidently represent the contractile vesicles common to almost all members of the Flagellata. Perty and Fresenius indicate the existence of a single large vesicle only at its anterior end; but the two, as shown by Messrs. Dallinger and Drysdale, are situated so close to each other as to naturally appear as one only, unless an extremely high magnifying power is employed. Perty's description and illustrations of the process of longitudinal fission differ to a slight extent from that reported by Messrs. Dallinger and Drysdale, he having observed on various occasions that the four new flagella are developed before the partitioning into halves of the original animalcule, and which is thus provided for a short interval with eight of these appendages. The young of this species, as recently figured by Stein, possess a very attenuate contour, as shown at Pl. XIX. Figs. 47 and 48, more closely resembling in this respect the adult form of *Tetramitus descissus*.

Tetramitus descissus, Perty. Pl. XIX. Figs. 49 and 50.

Body elongate, slightly curved, conical or wedge-shaped, plastic and somewhat variable in form, the posterior extremity mostly tapering and pointed, sometimes obtusely rounded; the anterior half of the body obliquely truncate or excavate on its concave or ventral side; flagella subequal, slender, inserted close to one another at the anterior margin of the frontal excavation; contractile vesicle single, located near the posterior extremity; endoplast central, spherical. Length of body 1–1800". HAB.—Stagnant water with decomposing organic matter.

This animalcule, originally described by Perty under the above title, is apparently identical with the flagellate form recently investigated by O. Büttschli, and referred by him, while retaining Perty's specific name, to the genus *Pyramimonas*. There are nevertheless one or two points in Büttschli's account which do not exactly correspond with Perty's figures and description, though such differences as exist may be possibly attributable to mere local variation. Thus the flagella, while described by the earlier authority as being equal to or longer than the body, are represented by Büttschli as only half that length. The obliquely truncate anterior border bearing these flagella is likewise described and figured by the same authority as extending backwards on the ventral side to a much further distance than is shown by Perty.

These distinctions, if further substantiated, may necessitate the future introduction of two separate specific titles in place of the one here employed. The sarcode substance of this variety is apparently more plastic and liable to variations of outline, under normal conditions, than that of *Tetramitus rostratus*. No details have yet been recorded respecting the phenomena of reproduction. Representations of this species closely corresponding with those given by Büttschli are included in Stein's recently published volume.

Tetramitus sulcatus, Stein. Pl. XIX. Figs. 26 and 27.

Body obtusely pyriform or subcordate, widest and rounded anteriorly, tapering towards and bluntly pointed at the posterior extremity, about one and a half times as long as broad; a deep groove traversing the entire length of the centre of the ventral side and imparting to the posterior extremity, as seen from beneath, a bilobate contour; flagella four in number,
of equal length, inserted close together in the centre of the anterior border; endoplast and contractile vesicle located side by side near the same anterior margin; parenchyma granular, soft and plastic. Length 1–700”.

HAB.—Fresh water.

The form of the body of this species, with its bilobate terminal extremity, accords closely with that of the Callodictyon triciliatum of Carter, the number and disposition of the flagella, and shape also of the body, excluding the median groove and posterior bifurcation, approaching that of Tetraselmis. In both of the last-named structural characters it differs considerably from the two preceding species, and would seem almost to lay claim to a separate generic title. In the figures only of this type included in Stein’s recently published work, the enclosure within the body of solid food-particles is delineated, but no indication is given of a distinct oral aperture; probably, as in Callodictyon, these are incerted at any point of the periphery.

Genus II. TETRASELMIS, Stein.

Animalcules free-swimming, solitary, contained within a transparent membranous lorica; four flagella of similar size and character inserted at the anterior extremity; endoplasm coloured green, usually enclosing an eye-like pigment-spot.

Tetraselmis cordiformis, Carter sp. Pl. XIX. Figs. 28 and 29.

Loria somewhat heart-shaped, widest and emarginate anteriorly, rounded and almost completely fittering the cavity of the lorica, coloured green throughout; flagella inserted close to each other in the centre of the anterior margin and thence protruded through the aperture of the lorica; eye-like pigment-spot situated near the centre of the lateral border; a large vacuolar dilatation lying immediately beneath the insertion of the flagella; contractile vesicles two in number, located one on each side of this area; endoplasm located in the median line, a short distance to the rear of the contractile vesicles; the posterior region of the body often containing from one to three or more solid corpuscles of an apparently amyloacceous nature. Length of lorica 1–933”. HAB.—Fresh water.

This species was first described by Mr. Carter * under the title of Cryptoglena cordiformis, and has been rightly recognized by Stein as representing an independent generic form. On one occasion Mr. Carter observed an example that had become encysted and broken up into a number of sporular bodies. The more complete diagnosis of the structural characters of the type here submitted is rendered with the aid of the illustrations of the species given by Professor Stein.

Genus III. CHLORASTER, Ehrenberg.

Animalcules free-swimming, somewhat variable in form, subfusiform, angular, or prismatic; the anterior border bearing a central vibratile flagellum surrounded by four long, recurved, hair-like or setose flagellate appendages; endoplasm coloured green, frequently enclosing a red eye-like pigment; no distinct oral aperture. HAB.—Salt and fresh water.

* 'Annals of Natural History,' 1858.
ORDER FLAGELLATA-PANTOSTOMATA.

The genus Chloraster, as here recognized, includes, in addition to the Chloraster gyran of Ehrenberg, the Pyramimonas of Schmarda, and a third salt-water form recently obtained by the author in the Channel Islands. The close affinity of all three, and the undesirability of separating them into two generic groups, is made manifest on reference to the figures of both Ehrenberg’s and Schmarda’s types, as included in Stein’s recently published work, and reproduced at Pl. XIX. As previously intimated, it has been proposed by Diesing and Bütschli to relegate the representatives of the genus Tetramitus also to that of Chloraster, or rather to Pyramimonas as defined by Schmarda, but it is evident from the comparatively complete data now made known concerning these respective groups that they exhibit nothing in common with each other, and cannot consistently be united.

Chloraster gyran, Ehr. Pl. XIX. Figs. 21 and 22.

Body subfusciform, widest centrally, pointed at each extremity, about twice as long as broad; the central region sometimes produced into four symmetrical lobate processes, which stand out at right angles to the long axis of the body; flagella five in number, of equal length, produced from the pointed anterior extremity; endoplasm green, enclosing anteriorly an eye-like pigment-speck. Length 1–632". HAB.—Fresh water.

The delineations of this type are reproduced from the figures given in Stein’s recently published volume.*

Chloraster tetrarhynchos, Schmarda sp. Pl. XIX. Fig. 20.

Body pyramidal or conical, truncate and widest anteriorly, the opposite extremity more or less pointed, longitudinally carinate down the central line at each of the four lateral angles; four long, recurved, setose flagella issuing from a papilla-like prominence in the centre of the anterior border, a long vibratile flagellum projecting from the centre of the reflected seta; colour green; movements swift, in a straight line or rotatory. Length 1–780' to 1–720'. HAB.—Fresh water: near Vienna (Schmarda).

No indication is given by Schmarda, in either his drawings or description, of the central vibratile flagellum characteristic of both the preceding and the succeeding species; this organ is, however, so difficult to detect without the use of reagents and the most perfect magnifying glasses that it may have naturally escaped his attention. In some instances, as likewise in the case of C. agilis, the more normal quadrate contour of the body of the animalcule is exchanged for a rounded subconical or shortly fusiform outline. No coloured eye-like pigment-spot appears to be present in this type. Mr. Carter, in a manuscript note-book kindly placed at the author’s disposal, has figured an organism with four radiating seta-like appendages at the anterior extremity, obtained by him from a well at Bombay, that is apparently closely allied to if not identical with this species. It having been collected in company with Cladophora fracta, Mr. Carter has suggested, in absence of further evidence, that the form may represent the motile zoospore-like elements of that algal; the appearance of both this and the following form, indeed, so closely approximates such reproductive structures, that but for the characteristic and evidently independent movements exhibited by C. agilis, circumstances would have apparently justified the relegation of this genus to the vegetable series.

In the accompanying figure given of this species, reproduced from Stein, there

* 'Infusionsthiere,' Abth. iii., 1878.
are no less than eight setose appendages delineated, representing apparently the number developed preparatory to the process of longitudinal fission.

Chloraster agilis, S. K. Pl. XIX. Fig. 15.

Body conical or subtriangular in profile, widest and truncate anteriorly, gradually tapering towards the posterior extremity, which is sometimes bluntly and sometimes sharply pointed; exhibiting in transverse view a quadrate outline with four symmetrically developed, projecting, keel-like angles; central vibratile flagellum slender, as long as the body, produced from a papilliform or pyramidal prominence that arises from the centre of the frontal border; four fine, flexible, setose flagella originating close to the base of the central flagellum, which they equal in length, and recurved towards the posterior extremity of the body; endoplasm pale transparent green, with a colourless central space, a faint red eye-like pigment-spot usually present near one of the angles of the anterior border. Length of body 1–2500". **Hab.—Salt water.**

This species, distinguishable from the preceding by its diminutive size and salt-water habitat, was obtained in some abundance in an infusion of hay in sea-water at St. Heliers, Jersey. It was first observed after the vegetable matter had been macerating for a space of about four weeks, and was probably imported originally with the water in the sporular condition. At first the author was disposed to identify it generically, if not specifically, with the *Pleotia vitrea* of Dujardin: his description of this form, however, in which it is described as possessing two flagella only, one of which is vibrated in advance and the other trailed behind and adherent at will, demonstrates the place of that species to be close to *Heteromita* or *Anisonema*, and nowhere near the present type. Like *Oxyrrhis*, this species exhibits a restless and active condition, in which it darts about too swiftly almost for the eye to follow, and a sedentary one, in which the body remains perfectly quiescent, and apparently angles for food with its extended vibratory flagellum. The four accessory, reflected, but flexible, hair-like setae, although motionless during the quiescent state, are probably brought into active use in the natatory condition, it being difficult otherwise to account for the rapidity with which it, as it were, shoots along in a straight line from one resting-point to another.

The number of the setose flagella, as also the exact contour of the body, whether triangulate or quadrate, proved for a considerable while a difficult point to decide, but was finally settled by the addition to the water of dilute osmic acid, which at once killed the animalcules without altering their shape, and thus made clear the characters embodied in the foregoing diagnosis and accompanying figure. Neither the existence of a contractile vesicle, of a definite oral aperture, nor the inception of solid food, has as yet been determined in this species. The apparent control over their motions in the water exhibited by these little beings demands brief notice, and fully proves their claim for admission as representatives of the animal series. In a drop of water containing several examples of this species, it was noticed that if one animalcule in its swift nomadic career passed near another, possibly striking it with one of its extended setae, the one so disturbed immediately started in pursuit, several often joining in the chase, and gambo11ing together in a manner corresponding with what is hereafter related of the Holotrichous Ciliate type *Cyclidium glaucoma*. In a similar manner it was also observed that they would congregate together in that part of the field most brilliantly illuminated by the aid of the achromatic condenser, when illuminated by artificial light. In addition to the faint red pigment-spot usually present at the anterior end, an oval, darkish-green, nucleus-like body was frequently noticed towards the posterior extremity.
Fam. XVI. HEXAMITIDÆ, S. K.

Animalcules naked, free-swimming or temporarily adherent; flagella six in number; no distinct oral aperture.

Genus I. HEXAMITA, Dujardin.

Animalcules naked, free-swimming or temporarily adherent; elongate-ovate or sub fusiform, but more or less plastic and variable in shape; the posterior extremity bearing two long, flexible, adhesive, caudal flagella; four long vibratile flagella produced from the anterior border; endoplasm and contractile vesicle usually conspicuous; no distinct oral aperture. Inhabiting stagnant water and the intestinal viscera of Amphibia. Increasing by longitudinal fission.

Up to a comparatively recent date much doubt prevailed respecting the existence of the hexaflagellate animalcules, imperfectly described and connected with the present generic title by Dujardin so long since as the year 1841. Within the last few years, however, various specific types have been rediscovered and subjected to minute examination by Stein, Bütschli, and the present author, their place as highly remarkable representatives of the Infusoria Flagellata being through such investigation fully established. Among the data of note concerning the vital phenomena of these singular animalcules, recorded for the first time in this volume, may be mentioned their demonstrated capacity to lead a temporarily attached, in addition to a natatory existence, as described in association with the two specific types *H. intestinalis* and *H. inflata*. Although Stein has indicated in one of his drawings the position of a presumed oral aperture, no trace of any such distinct inceptive area has so far been detected by the author. Pending, consequently, the production of more decisive evidence in this direction, it has been decided to relegate the members of this generic group to the section of the Pantostomata.

Hexamita intestinalis, Duj. **Pl. XIX. Figs. 60–62.**

Body sub fusiform, widest towards the anterior region, tapering and pointed posteriorly, two or three times as long as broad, frequently with one or two longitudinal dorsal sulci; all six flagellate appendages similar in size, equalling or exceeding the length of the body, the two posterior trailing flagella inserted close to each other at the pointed posterior extremity, the four anterior vibratile flagella originating in like manner from the anterior or apical extremity; contractile vesicle anteriorly located; endoplasm spherical, subcentral. Length 1–2000" to 1–1500".

Hab.—Alimentary canal of Tritons and Batrachia.

This species is illustrated by a large series of figures in Stein's recently published volume, and has been obtained and examined in considerable abundance by the author from frogs dissected at Professor Huxley's biological laboratory, South Kensington, during the winter session of 1879 and 1880. In none of the illustrations given by the first-named authority is, however, any indication given of the characteristic habit manifested by the animalcules to attach themselves by their posterior flagella, as observed by the author of both this and the species next described. When

first transferred to the stage of the microscope, they, like *Polytoma*, usually rush wildly about the field, conveying the impression that they are entirely free-swimming. After a short interval, however, their movements get less excited, and they finally affix themselves to the glass slide, or any neighbouring organic debris, by their adherent posterior flagella, while the four anterior appendages are vibrated actively in the surrounding liquid medium, in the manner indicated at Pl. XIX. Fig. 61. The exact number, character, and point of insertion of the flagella may be readily substantiated during this attached condition, though with even greater facility on killing the little creatures by the application of a small drop of iodine or osmic acid. The extreme flexibility of these animalcules is frequently manifested in both their natatory and sedentary conditions, the body being frequently flexed to such an extent that the anterior and posterior extremities almost touch. In the figures of *Hexamita intestinalis*, recently published by Stein, two examples are represented as possessing a delicate, denticulate, frill-like membrane on each side of the anterior border, one of these, as represented at Pl. XIX. Fig. 62, exhibiting in addition numerous elongate papillose projections in the posterior region, which are pronounced in the index to be merely adherent Bacteria. No such frill-like border could be detected in any of the examples examined by the author, and it would seem highly probable that both this structure and the Bacteria-like appendages represent peculiarly modified pseudopodic expansions of the body-sarcode of the animalcule preparatory to the assumption of an encysted state. Similar slender papillose pseudopodia are shown in this volume to be emitted under like circumstances by the zooids of *Codosiga botrytis* and *Cephalothamnium caespitosa*. The young of this species, according to Stein's figures, possess only two anteriorly inserted vibratile flagella, while the general contour of the body is more attenuate than that of the adults.

Among the numerous examples recently examined by the author, zooids were not unfrequently observed, in which the posterior region was distinctly cleft or bifurcated, after the manner of the succeeding species. This circumstance, added to the fact of the identity of the habitats of the free-swimming *H. inflata* and the Amphibia that harbour *H. intestinalis*, not unnaturally raises a doubt as to whether these two presumed distinct types may not ultimately prove to be free-swimming, and endoparasitic phases of the same specific form.

Hexamita inflata, Duj. Pl. XIX. Figs. 56-59.

Body oblong or subquadrangular, emarginate or bifid posteriorly, plastic and changeable in form, varying from one and a half to two or three times as long as broad, the two caudal trailing flagella produced as tail-like prolongations of each limb of the posterior bifurcation, the four anterior vibratile flagella originating close to one another in the centre of the anterior border; contractile vesicle anteriorly located; endoplasm sub-central. Length 1-2500" to 1-1200".

Hab.—Pond water with decomposing organic matter and in vegetable infusions.

Independently of its distinct habitat, this species is to be distinguished from the preceding form by its broader contour and the conspicuous emargination of the posterior region. It has recently been figured by both Stein and Bütschli, and has also been obtained by the author from both marsh-water and from an infusion of decaying flowers, its companions in each instance being *Trepomona agilis*, and in the latter one also *Vorticella infusionum*. Like *Hexamita intestinalis*, it has been frequently observed to affix itself by the two caudal flagella, the anterior appendages being meanwhile deployed and vibrated actively in the surrounding water, with the apparent object of drawing suitable food-particles within reach of the body. The animalcules under this temporarily affixed condition were found on several occasions
to exhibit a remarkable peculiarity of deportment, which, though subsequently observed, has not as yet been recorded of the preceding type. The adhesion in these instances was effected only by the extreme distal terminations of the caudal flagella, and the animalcule, extended to its full length at their extremity, rotated rapidly backwards and forwards on its long axis. The two caudal flagella were thus alternately twisted upon each other in converse directions, while the four anterior appendages performed, in unison with this reversible gyratory motion, graceful and devious curves around the creature's body; the aspect of an animalcule engaged in such active exercise is represented at Pl. XIX, Fig. 59. As already suggested by the author in an article on "Parasitic Infusoria," contributed to the 'Popular Science Review' for October 1880, it would seem highly probable that the form described by Professor Leidy under the title of Trichonympha agilis—referred provisionally in this treatise to the Holotrichous order of the Ciliata—represents some species of Hexamita, imperfectly observed by him under the conditions just related. The simile invoked by this authority in connection with Trichonympha, that of ballet-dancers having long cords suspended from their shoulders, which whirled around them in many undulations as they danced, by no means inaptly represents the characteristic aspect of the members of the present genus during their attached gyratory phase of existence here recorded.

The adhesive character of the caudal flagella of Hexamita is often manifested by the animalcules picking up flocculent matter or other debris with these appendages, and dragging it with them as they swim through the water. This phenomenon is indicated in the delineation by Stein, without explanatory notes, reproduced at Fig. 58 of the plate just quoted, and has been frequently witnessed by the author. In addition to its more ordinary sedentary condition, the present type has also been observed by the author to creep and bore its way through the gelatinous zooglea-scum collected on the surface of vegetable infusions, the body at such times assuming the most protean contours, and closely resembling that of an Amoeba. Hexamita inflata is figured by Büttschli as having six vibratile flagella, in addition to the caudal pair, inserted at remote distances upon the lateral periphery. This representation of their disposition is apparently derived from an error of interpretation, otherwise, if eight flagella in all were actually present, the example had evidently developmented a supplementary pair, preparatory to the process of longitudinal subdivision. Such an octoflagellate example, reproduced from Stein's volume, is delineated at Pl. XIX, Fig. 57; but in this case the supplementary pair is developed at the posterior extremity, which has become doubly emarginate or quadrifid.

Hexamita rostrata, Stein. Pl. XIX. Fig. 55.

Body fusiform, broad and inflated centrally, with a conical or rostrate anterior prolongation, and a still longer and attenuate caudal termination, the total length about equal to twice the central breadth; flagella long, slender, and of equal size, the four anterior ones inserted close to each other at the apex of the anterior prolongation, the two posterior appendages similarly approximated at the end of the caudal extension; contractile vesicle posteriorly situated; endoplast not indicated. Length 1-640”.

HAB.—Unrecorded.

This species is shown by Stein's figures to correspond closely with H. intestinalis, but may be distinguished from the same by the distinct prolongations of the anterior and posterior regions of the body. In general contour, as delineated by Stein, this type may be said to correspond singularly with that of the apterous insect Lepisma, the proportions and locations of the two sets of flagella agreeing in a remarkable manner with the antennary and caudal filaments of that arthropod.
Hexamita nodulosa, Duj.

Body oblong, with three or four longitudinal nodular rows, the two lateral of which are extended posteriorly, imparting to this region a bifurcate aspect; caudal flagella produced from the posterior bifurcations; vibratile flagella four in number, long and slender, projecting from the anterior margin. Length 1–2000" to 1–1500".

HAB.—Pond water with decomposing animal matter.

This species, as yet observed only by Dujardin, is most probably, as suggested by Bütschli, a variety merely of *H. inflata*.

Fam. XVII. LOPHOMONADIDÆ, S. K.

Animalcules naked, solitary, and free-swimming, bearing a tuft of flagella at the anterior extremity; no distinct oral aperture.

Genus I. LOPHOMONAS, Stein.

Animalcules free-swimming, somewhat plastic and varying in form, spherical, ovate, or fusiform, bearing at the anterior extremity a crescent-shaped fascicle of long, slender flagella; endoplast sometimes distinct; contractile vesicle not yet recognized; inhabiting the intestinal tract of various Insecta.

This genus was first instituted by Stein, in the year 1860,* for the reception of a singular form obtained by him from the intestinal canal of the common cockroach, *Blatta (Periplaneta) orientalis*. The same type has been since met with under similar conditions by O. Bütschli, who has further described a second well-marked species. The tuft-like fascicle of flagella at the anterior extremity, forming the leading characteristic of the members of this genus, consists of so thick an aggregation of these vibratile appendages, as to convey to the individual zooids the aspect almost of certain Ciliata, such as *Strombidium*.

Lophomonas blattarum, Stein. Pl. XIX. Figs. 52–54.

Body somewhat variable in form, ovate or subspherical, surface smooth; the frontal margin slightly narrowed, abruptly truncate; flagella issuing in a dense brush-like tuft from the frontal border, the central ones longest, directed straight forward, equal to or exceeding the length of the body, the lateral ones shorter, gradually diminishing in size, reflected outwards; an indistinct vesicular space posteriorly located; endoplast spherical, situated in the median line near the anterior extremity. Length of body 1–825".

HAB.—Intestine of the common cockroach, *Blatta (Periplaneta) orientalis*.

The accounts given by Stein and Bütschli of this animalcule, while agreeing in general details with one another, differ slightly in some minor points. Stein, for instance, has described the examples examined by him as of a rounded subspherical shape, whereas those forming the subject of Bütschli's investigations were, for the most part, of elongate-oval form; the rounder outline being chiefly associated

* 'Sitz. der könig. böhm. Ges. Wiss.'
with younger individuals. This slight disparity of contour, Bütschli suggests, may be possibly accounted for by the fact that Stein turned his examples into pure water, a medium which, proving uncongenial to their habits, may have resulted in their assumption of a more contracted shape. Using himself a solution of the white of egg, he preserved the animalcules in a healthy and normal state for a space of twenty-four hours and upwards. The presence of food-particles within the substance of the endoplasm has been observed by both of the authorities quoted, Stein further reporting the possession of a narrow, crescentic oral aperture at the anterior extremity. The existence of such a structure is, however, not confirmed by the investigation of Bütschli. The food-particles ingested are usually collected together in the posterior half of the body, leaving the anterior moiety clear and transparent; the expulsion of effete matter at the posterior extremity was on one occasion witnessed by Bütschli. Not unfrequently this investigator observed that the body-plasma of the posterior end was drawn out in a tail-like manner; his illustration given of this phenomenon being at the same time connected with one of the rounder or younger individuals, would seem to indicate that in this earlier stage the sarcod of the body presents that greater amount of viscosity or ductility which is common to the young, and in some instances to the adults also, of the more simple monadine types. The first step towards the process of increase by fission has been observed, but not the complete act. In one of these suspected instances there was an appearance as of fine cilia at the posterior extremity of the body. The movements of the flagella-fascicle of this animalcule are somewhat complex, the central bundle of straight and longer ones undulating together rhythmically, while the shorter and reflected lateral ones vibrate independently.

Lophomonas striata, Bütschli. Pl. XIX. Fig. 51.

Body variable in shape, mostly subfusiform, with an attenuate and pointed posterior extremity, but sometimes ovate and rounded in this region; anterior border abruptly and somewhat obliquely truncate; flagella-fascicle brush-like, similar to that of *L. blattarum*, but somewhat shorter in proportion to the length of the body; the entire external surface distinctly and obliquely striate; contractile vesicle and endoplasm not yet observed. Length 1–800".

HAB.—Intestine of *Blatta (Periplaneta) orientalis*.

Although the characters of this animalcule appear sufficiently distinct for separate specific recognition, Bütschli entertains some doubt whether it may not ultimately be found to represent a transitional condition only of *L. blattarum*. The two, while tenating the same specific host, were, however, usually found inhabiting separate individuals, and did the present form represent a developmental phase only of the other, it would scarcely have escaped Stein's notice. The substance of the parenchyma in this type or variety would appear to be much more homogeneous than in the form last described. A clear vacuolar space was on one occasion noticed near the anterior extremity, but no trace of an endoplasm or nucleus could be detected.

Leydig has briefly referred, in his anatomical description of the mole-cricket, *Gryllotalpa*, to a globose animalcule bearing a lateral tuft of undulating hairs, that inhabits the intestinal tract of that insect. As remarked by Bütschli, it is highly probable that this organism represents another species of *Lophomonas*, as also that this genus has numerous other representatives distributed among the Orthopterous order of the Insecta.

Fam. XVIII. CATALLACTIDÆ, S. K.

Animalcules coherent in social clusters, their anterior and exposed border clothed with long vibratile flagella; no distinct oral aperture.
GENUS I. MAGOSPHÆRA, Haeckel.

Animalcules free-swimming, united in social clusters, joined to each other centrally by an inward extension of their prolonged posterior extremities, the anterior or exposed margin of each animalcule clothed with long vibratile flagella; endoplasm and contractile vesicle conspicuous, increasing by the subdivision into sporular elements of a single encysted zooid. Inhabiting salt water.

Professor Haeckel * has proposed to create a special and independent class of his sub-kingdom of the Protista, which he denominates the Catallacta, for the reception of the as yet single known type bearing the above generic title, discovered by himself on the coast of Norway. It is evident, however, that the structure, life history, and developmental features of this organism, as reported by himself, accord so closely with those of all the ordinary representatives of the Infusoria Flagellata, as recorded in this volume, that any such complete isolation of this particular type is altogether artificial and uncalled for. Individually examined, the zooids of Magosphera correspond remarkably with those of the endoparasitic type Lophomonas, last described, and if encountered separately under like conditions would undoubtedly be relegated to the same multilagellate genus. Their coherence in spheroidal clusters, again, and maintenance of a free-swimming existence, find precise parallels in such genera as Synura, Synepyra, and Uroglena, while the ultimate assumption by the zooids of an amoeboid phase and subdivision into sporular elements are common to the majority, if not to the entire section of the Pantostomatous Flagellata. Mostly, among the ordinary Flagellata, the resultants of such a process of multiple fission or sporular subdivision become scattered asunder throughout the surrounding water; a like more or less permanent coherence of the subdivisional derivatives is nevertheless maintained by the three last-named genera, and, with certain modifications, recur in those motile reproductive products of the sponges, the “swarm-gemmules” or so-called “ciliated larvae,” discussed at length in Chapter V., and which are there shown to consist similarly of ovate or subspheroidal aggregations of flagellate animalcules. The only essential distinction manifested by the several types just quoted consists of the fact that in these latter the constituent zooids of the spheroidal or ovate masses are monoflagellate or biflagellate, while in those of the present generic group they are polyflagellate. While thus reluctantly compelled to ignore Professor Haeckel’s claim on behalf of Magosphera of a title carrying with it the comprehensive significance he would attach to it, his denomination of the same, slightly modified so as to reduce its import to that only of a family name, is here preserved.

Bodies pyriform, forming spheroidal clusters, united to each other centrally by an attenuate inward prolongation of their posterior extremities, the interstices between being filled in by a common gelatinous matrix or zoocytium, the anterior margin truncate flattened, the antero-lateral borders polyhedral through mutual pressure; flagella equalling one-half of the length of the body, developed from the entire exposed anterior surface; endoplasm spherical, situated in the median line towards the anterior extremity; contractile vesicle single, subcentral. Diameter of adult sphere-masses 1–320”.

HAB.—Salt water, Norwegian coast.

The development of this interesting form, as reported by Haeckel, may be thus summarized. The earliest or initial condition is represented by a single spherical, egg-like body, containing a large central nucleus or endoplast and enclosed nucleolus or endoplastule immersed within structureless transparent protoplasm, and surrounded by a denser investing membrane, as shown at Pl. I. Fig. 16; the nucleus divides by fission into two equal halves, accompanied by a similar segmentation of the circumjacent protoplasm, each section of which now envelops a single nucleus. By a repetition of this process, similar to that of ordinary yolk-cleavage, four, eight, sixteen, and finally thirty-two nucleated cleavage-spheres or daughter-cells are produced, and the segmentation is completed. The thirty-two bodies resulting from this segmentation begin now to exhibit amoeboid movements within the investing pellicle, and emit from their surface small, irregular pseudopodic processes; these gradually become longer and thinner, ultimately presenting the form of attenuate vibratile flagella. United in a single spherical mass these bodies rotate slowly within their membranous prison, which at length bursts asunder, leaving the compound colony to swim away freely in the surrounding water, under the characteristic adult aspect detailed in the foregoing diagnosis, and delineated at Pl. I. Fig. 12. Sooner or later this compound body falls to pieces, the individual zooids assume an amoeboid form (Fig. 15), and it is believed become encysted and once more repeat the cycle. During their active aggregated life the zooids ingest food apparently at any part of their exposed anterior border, there being no distinct oral aperture, and likewise during their amoeboid condition through any portion of their periphery.

Apart from the true affinities and significance of Magospherea previously discussed, the singular resemblance in general form, size, and plan of ciliation of the separate zooids to the constituent elements of ciliated epithelium will at once suggest itself to the practical physiologist. A coherent sphere of such epithelial cells indeed, excepting for the absence of the contractile vesicles, would be indistinguishable from a colony-stock of Magospherea planula, as originally described and delineated by Professor Haeckel.

Order V. CHOANO-FLAGELLATA, S. K.

OR FLAGELLATA-DISCOSTOMATA.

Animalcules exceedingly minute, highly polymorphic and variable in form, usually exhibiting in their most normal and characteristic phase a symmetrically ovate, pyriform, or clavate outline; a single long, lash-like flagellum produced from the centre of the anterior border, the base of which is embraced by a delicate, hyaline, extensile and retractile, collar-like expansion of the body-sarcode; the collar in its extended condition infundibuliform or wineglass-shaped, when contracted subcylindrical or conical, exhibiting in its expanded state a distinct circulating current or cyclosis of its finely granular substance; ingestive area discoidal, food-substances being brought in contact with the expanded collar through the vibratory action of the flagellum, first carried up the outside and then down the inside of this structure with the circulating sarcode current, and finally received into the substance of the body anywhere within the circular area circumscribed by its base; facal or waste products discharged at any point within the same discoidal space; a distinct spheroidal endoplast with a contained endoplastule and two or more contractile vesicles usually conspicuous.
Inhabiting salt and fresh water. Increasing by longitudinal or transverse fission and by encystment and subdivision of the entire body into sporularelements.

Section I. DISCOSTOMATA-GYMNOZOIDA.

Collared monads free-swimming or sedentary, loricate or illoricate, solitary or colonially associated, never in the latter instance completely immersed or hidden within special chambers in a common gelatinous matrix or cytoplasm, but either entirely naked or with their distal regions freely exposed to the surrounding water.

The extensive and remarkably beautiful series of Flagellate organisms comprehended under the present sectional title may be said to represent the fruits of the most recent microscopic research. The immunity from discovery and taxonomy which they have for so long previously enjoyed is undoubtedly due to their excessive minuteness, the largest individual zooid in the entire group not exceeding in length the 1–1000th part of an English inch, while in the majority of instances the much smaller calibre of the 1–3000th obtains. The rapid progress made by opticians, however, within the last few years, in the production, at a moderate cost, of object-glasses of high magnifying power, has placed in the hands of the histologist the key to an entirely new organic world, and of which the present group furnishes, perhaps, a not altogether inappropriate illustration.

The earliest intelligible record given concerning the existence of the series of minute organisms here referred to the newly established order of the Choano-Flagellata, and distinguished in all instances by their possession of the delicate, collar-like organ which encloses with its base the single terminal flagellum, must undoubtedly be associated with the name of the late Professor H. James-Clark, of the Agricultural College of Pennsylvania, U.S.A., who in June 1866 communicated to the Boston Society of Natural History a detailed account, with copious illustrations, of four American forms discovered by himself as inhabitants partly of salt and partly of fresh water. Previous to this date such authorities as Ehrenberg and Stein had certainly figured and described one or two species of the genus Codosiga as minute varieties or early growths of representatives of the Peritrichous genus *Epistyliis*, while Fresenius had gone so far as to recognize in the form now known as *Codosiga botrytis* the flagelliferous character of the component zooids, and also the possession by them of a truncate hyaline projection of the anterior border that may be readily identified at the present day with the distinct collar-like organ that characterizes all members of this group. Prior even to the time of Ehrenberg a record of the existence of these minute Flagellate organisms is to be met with, some members of the genera, *Monosiga* or *Salpingaea* being in all probability represented by the so-called "squamule adhaerentes" figured by O. F. Müller, and even referred to by Leeuwenhoek as being found attached to the pedicles of *Vorticella (Carchesium) polypinum* and *V. (Epistyliis) anastatica*. The names of those who have to be accredited with the confirmation and further extension of the comparatively recent discoveries of Professor Clark are as yet but few in number. The pleasant experience of being the first upon this side of the Atlantic to recognize types belonging to the same category, partly identical with and partly differing from those made known by that authority, and to generally substantiate that interpretation of their structure which he had first submitted, fell to the lot of the present author.

A notice of such discovery, with illustrations and brief diagnoses of the several forms observed, was communicated to the meeting of the Royal Microscopical Society held on November 1st, 1871, and was published in the following, December, number of the "Monthly Microscopical Journal." From that date forward the author's attention has been more especially concentrated upon this highly interesting organic group, the result of such investigation being the registration of over three-quarters out of the total number of fifty or more species now known to science, and described in
this treatise. The greater number of this series were already known to the author in the year 1877, and formed the subject of a communication, accompanied by an extensive set of plates, read in abstract at the meeting of the Linnaean Society on June 21st, 1877. While, however, it was subsequently decided to reserve all complete textual and illustrative details for primary publication in the present manual, a general summary of the contents of this communication was given in three articles published respectively in the 'Annals and Magazine of Natural History' for January and August 1878, and in the 'Popular Science Review' for April of the same year. As an accompaniment to the article in this last-named periodical, entitled "A New Field for the Microscopist," were produced furthermore two plates containing upon a reduced scale delineations, with their technical names attached, of all the newly discovered species embraced in the larger communication made to the Linnaean Society, so as to secure for them a priority of nomenclature pending the appearance of the present treatise. Since the publication of these several papers a recognition of the collared monads has been accomplished by the German authorities, Professors F. Stein and O. Bütschli, the former more especially in his 'Infusionsthiere,' Bd. iii. Heft 1, produced in November 1878, containing illustrations, of which the textual descriptions yet await publication, of some half a dozen varieties distinct from those first discovered by Professor Clark, or included in the author's earlier communication of the year 1871. Bütschli's observations were confined to three or four specific forms identical with types previously examined by Professor Clark or the author. Still later, M. Charles Robin, in the 'Journal de l'Anatomie et de la Physiologie' for November 1879, has placed on record the results of his investigation of the single type Codosiga botrydis, bringing to a conclusion the enumeration of the literature concerning this highly interesting group of the Flagellata so far accumulated. By no one of these several authorities, however, has there as yet been produced any attempt at a full interpretation of the remarkable and important functional properties pertaining to the delicate funnel-shaped sarcode expansion or "collar" common to all the members of this organic series. By both Professor Clark and Bütschli it has been maintained that an oral aperture is present, the former indicating its position as within the area circumscribed by the collar, and at the base of the flagellum, while Bütschli, in the case of Codosiga botrydis, has somewhat more vaguely defined it as appertaining to special vacular areas developed at different points of the periphery external to the base of the expanded collar. The intimate correlation of this last-named structure with the process of food-insertion, appears to have altogether escaped recognition by these investigators.

What the precise import of the "collar" is, and in what manner it is connected with the digestive functions, had been ascertained by the present author so far back as the year 1871, and is indirectly referred to in the paper then communicated to the Royal Microscopical Society, already quoted. Full details, with explanatory illustrations, were, however, reserved for comprehension in the more exhaustive account of this remarkable group of animalcules produced six years later, and were also extensively set forth, with accompanying figures, in the two articles bearing upon this subject, published in the months of January and April 1878. A slightly amended quotation in extenso from the later of these two publications, in conjunction with the coloured frontispiece of this manual, may be advantageously produced on the present occasion in illustration of the structural and functional properties and peculiarities of the organ now under consideration:—"Specifically, this delicate hyaline organ, the 'collar,' is of such extreme tenuity, that its true form and nature can be demonstrated only by a very careful adjustment of the achromatic condenser or other accessory illuminating apparatus employed, and is even then exhibited to greater advantage by supplying the animalcule under examination with artificial food, such as carmine or indigo. Under the conditions last mentioned, it will be found that the collar consists of a transparent infundibuliform film of sarcode that may be protruded from and withdrawn at will into the general substance of the monad's body, in the same manner as the sarcode prolongations or pseudopodia of an Amoeba or other Rhizopod. As in the pseudopodia of certain Rhizopods, such
as the Foraminifera, it will moreover be found that, notwithstanding the extreme tenuity of the sarcode film, a circulation of its substance is being constantly maintained, flowing upwards on the outside, over the distal edge or rim, and downwards on the inner surface, at the base of which it again comes in contact and merges with the protoplasmic substance of the body. This wineglass-like film of sarcode doubtless acts as an efficient branchial or respiratory organ, but such by no means represents its most important function. In conjunction with the centrally enclosed flagellum it constitutes a most admirably contrived trap or snare for the capture and retention of the animalcule’s food. Whirling round with inconceivable rapidity, the last-named organ, the flagellum, creates a strong centrifugal current in the water, setting in from behind towards the direction of its own apex, and bringing with it all such tiny organic particles as do not possess sufficient weight or power to stem its tide.* But for the outstretched collar, these would simply hurry with the stream past the monad’s body and out of reach. Not for them, however, so easy a passing of the rapids! In the midst of their swift career they strike against the almost impalpable film of sarcode of which the organ is composed, and to this they adhere as tenaciously as a snared bird to a lime-daubed twig or an incautious fly to a spider’s web. Then slowly, almost imperceptibly, the captive atoms are carried along with the circulating current of the collar’s substance up the outside and down the inside until, on reaching the base of its inner surface, they are engulfed within the sarcode substance of the monad’s body. The food-particles after ingestion are gradually accumulated into spherical agglomerations, and then regurgitated through the body under conditions nearly identical with those exhibited by such a higher infusorial type as *Vorticella.* The indigestible residua are eventually liberated from the area, limited by the base of the collar, within which they primarily gained access.†

The highly characteristic aspect of an animalcule that has fed upon and become gorged with carmine particles in the manner previously suggested, is delineated in the frontispiece of this treatise, which represents an animalcule of *Monosiga gracilis* S. K., viewed with the enormous magnification of 8000 diameters, as obtained by a 3⁄4-inch object-glass and C ocular, supplied to the author by Messrs. Powell and Lealand. The arrows placed in various positions serve to indicate the direction of the current induced by the active rotation of the flagellum, and also the course described by the carmine particles after striking upon and becoming adherent to the extended collar. Even where the magnifying power employed is not sufficient to exhibit the cyclosis of the collar substance, the addition of carmine or indigo, in a granular form, to the water containing the animalcules is highly advantageous, since the particles having a tendency to accumulate upon the distal rim of the structure, as shown in the frontispiece, define its contour with an amount of perspicuity obtainable under no ordinary conditions. Most usually, in point of fact, as seen even with adequate magnification, this highly important organ, the collar, is visible only in the optically denser regions represented by the two lateral peripheries, taking the apparent shape then of two linear or setaceous appendages projecting one on either side of the centrally located flagellum. As such apparently simply linear or setose structures, the lateral peripheries of the characteristic collar have indeed been delineated by both earlier and more modern investigators. Examples of monads having their true structure thus only partially revealed, are abundantly furnished by the illustrations reproduced from the authorities referred to, given at Plate II. Figs. 12, 16, 19, 20, and 21, Pl. V. Figs. 32 and 33, and Pl. VI. Fig. 11. The figure last quoted is of especial interest, since it represents a form included by Mr. Carter

* This seemingly anomalous direction of the current induced by the motion of the flagellum may be simply and practically illustrated and explained by inserting a stick through a ring and giving them a swift rotatory action, the free or distal end being made to describe the larger circle. Although the stick may be elevated perpendicularly, the ring will travel from the base to its apex, thus demonstrating the centrifugal nature of the force engendered. Such a more abnormal rotatory flagellum will act as a "*pulselium*" (see p. 416), driving the body, if detached, backwards through the water. In all ordinary Flagellata the motions of the flagellum are simply undulatory, producing currents in an opposite direction, or towards its base of attachment, and the appendage acting as a "*tractellum*" drags the body after it, if detached, in a straightforward course.
in his note-book so long ago as the year 1857, under the designation of an "animalcule with ear-like processes," and which has been since recognized by him as a species closely allied to the Salpingaea amphoridium of Professor H. James-Clark.

The more exact morphological significance of that special organ, the "collar," remains to be discussed. Having due regard to the circulatory currents or cyclosis manifested by the sarcode substance of which it is composed, there can scarcely be room for doubt that this structure finds its precise homologue in the pseudopodia of the Foraminiferous group of the Rhizopoda, and in which a similar circulation or cyclosis of the constituent sarcode is exhibited. Its extreme mobility and plasticity, allowing it at will to be contracted from a widely expanding infundibular contour to a subcylindrical or truncate conical outline, as first recognized by Clark, and shown in many of the accompanying illustrations, or further to be withdrawn entirely into the substance of the body, is of itself indicative of a close relationship with the group just designated. The collar may, in fact, be most appropriately compared in this connection to a funnel-shaped aggregation of the single anteriorly protruded pseudopodic fascicle of some Monothalamous Foraminifer such as Lagena or Miliola, or it may be supposed that such a type has developed a single subcylindrical anterior pseudopodium, whose substance has become hollowed out centrally, so as to produce a tubular or infundibuliform contour. In either case the central flagellum may be regarded as a supplementary appendage, whose presence alone secures the group of the Choano-Flagellata from being placed among, or closely adjacent to, such typical Rhizopoda.

Comparatively small as is the number of species that have so far been referred to this Discostomatous or collared Flagellate section, the multiplicity of forms presented by them is truly remarkable. Still more noteworthy, however, in this connection, is the extraordinary similarity that subsists between these various modifications and conditions of growth, as here exhibited, and those found to obtain among the more highly organized Peritrichous group of the Vorticellidae. Like these latter, the great majority of its members pass a sedentary existence, and are similarly distinguished under such conditions for their solitary, or social and dendritic habits of growth, for their secretion and occupation of distinct horny loricas, or for their colonial aggregation within a common gelatinous matrix or zoocytophyllum. Compared in detail with one another, the isolated representatives of the genus Monosiga may aptly be likened to those of Vorticella or Rhabdostyla, Codosiga to Epistylius or Opercularia, Salpingaea to Vaginicola or Cothurnia, while in Phalansterium and Protospongida the conditions presented find their precise parallel in Ophrydium. It would seem by no means unreasonable, indeed, to regard these diversely modified Flagellata as the line ancestors or archetypes of the Peritrichous series, and it has been already suggested by Gruber* that the funnel-shaped collar of the present Flagellate series finds its morphological counterpart in the delicate transparent membrane lying within the peristome of many ordinary Vorticellidae, and which seen in profile presents the aspect of a setose appendage. A still closer approximation is, however, undoubtedly found in E. Ray Lankester's anomalous genus Torquatella, where an extensile and contractile collar-like membrane takes the place of the normal circular fringe of cilia. As demonstrated in various instances in the course of this treatise, the primitive condition of the adoral fringe or wreath of cilia is that of a simple membranous band or expansion; and accepting the phenomena thus exhibited by the life-history of the zooid or individual as in all probability indicative of the developmental cycle or phylogeny of the group or order, it may be consistently inferred that the Peritrichous series originated from a stock or phylum in which the now highly specialized adoral ciliary wreath was represented by a simple infundibuliform membranous expansion. While the genus Torquatella affords substantial evidence in favour of this interpretation, still more important testimony in the same direction is perhaps yielded by the two Cilio-flagellate types Stephanomonas and Asthmatas. Both of these, while possessing an anteriorly located

* 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xxxi., 1879.
circular fringe of cilia, are furnished in addition with a long terminal flagellum, the relationship maintained between these diversely modified appendages being identical with that subsisting between the collar and its centrally enclosed flagellum in the flagellate group now under discussion. If, indeed, future investigation were to reveal that the initial condition of the ciliary wreath in these two generic types took, as in other cases, the form of a simple membranous expansion, these animalcules, during such earlier epoch of their existence, would be altogether indistinguishable from the representatives of the ordinary Choano-Flagellata. In Asthmatos it is further noteworthy that the cilia comprising the adoral wreath are of an unstable and fugitive nature, being capable of protrusion and retraction after the manner of pseudopodia within the substance of the body-sarcod. This particular attribute of the appendages in question may be also cited as substantially supporting the affinity here inferred, a similar but even more conspicuously pronounced Rhizopodal attribute being exhibited by the morphologically corresponding or homologous appendage possessed by the collared monads.

As already briefly related at page 80, the animalcules belonging to this highly interesting Flagellate order are remarkable for their pale glaucous green or fluorescent hue, such colour assisting materially in the recognition of their presence even when the magnifying power employed is insufficient for the detection of their characteristic collar, with its enclosed flagellum.

The leading demarcations of the family and generic groups of the independent or Gymnozoidal section of the collared Flagellata or Discostomata adopted in this volume are set forth in the accompanying Table.

FAMILIES AND GENERA OF CHOANO-FLAGELLATA.

SECTION I. DISCOSTOMATA-GYMNOZOIDA.

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>GENUS</th>
<th>GENUS MONOSIGA, S. K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. CODONOSIGIDÆ</td>
<td>Attached..</td>
<td>Solitary, stalked or sessile</td>
</tr>
<tr>
<td>Animalcules naked, secreting neither a lorica nor a gelatinous syncytium.</td>
<td>United socially on a common pedicle</td>
<td>1. Monosiga.</td>
</tr>
<tr>
<td>Free-swimming</td>
<td>United in stellate clusters</td>
<td>2. Codosiga.</td>
</tr>
<tr>
<td>II. SALPINGCIDÆ</td>
<td>Lorica solitary</td>
<td>Sedentary</td>
</tr>
<tr>
<td>Loricae united socially and forming a branching polythecium</td>
<td>4. Desmarella.</td>
<td></td>
</tr>
<tr>
<td>III. PHALANSTERIIDÆ</td>
<td>Collar rudimentary</td>
<td>5. Salpingaea.</td>
</tr>
<tr>
<td>Animalcules secreting a gelatinous zoocytium; forming extensive social colonies.</td>
<td>Collar well developed</td>
<td>6. Lagenaea.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. Polycia.</td>
</tr>
</tbody>
</table>

Fam. I. CODONOSIGIDÆ, S. K.

Animalcules free-swimming or attached, solitary or socially united, entirely naked, secreting neither independent loricae nor gelatinous zoocytia; collar well developed, encircling the base of the single terminal flagellum; contractile vesicles two or three in number, posteriorly located; endoplasm spherical, subcentral.

GENUS I. MONOSIGA, S. K.

(Greek, monos, solitary; siga, silence.)

Animalcules solitary, illoricate, of ovate or spheroidal contour, but somewhat plastic and changeable in shape, sessile or attached through the medium of a simple rigid pedicle; bearing anteriorly a well-developed
membranous collar and single centrally enclosed flagellum; contractile vesicles two or three in number, posteriorly located; endoplast spheroidal, subcentral. Inhabiting salt and fresh water. Increasing by transverse fission, and by the breaking up of the entire body-mass into sporular elements.

This newly established generic group comprehends the simplest known representatives of the Choano-Flagellate order. All its members, while agreeing essentially in structure with the isolated zooids of the previously discovered genera Codosiga and Salpingeza, are to be distinguished from the former by their eminently solitary mode of growth, and from that of Salpingeza by the entire absence of a protective sheath or lorica. With relation to the compound type Codosiga, Monosiga may be said to occupy a position similar to that which subsists between the solitary Peritrichous genus Vorticella and the compound forms Carchesium and Epistyli. In all the species here enumerated it has been observed that the body-sarcode is of much softer and more plastic consistence than obtains in either Codosiga or most other generic representatives of the same order; owing to this circumstance it is found that while each specific type preserves a more normally maintained characteristic form, the separate zooids are subject to considerable individual variation. A like plasticity, developed, however, to a more extensive degree, is especially distinctive of the aggregated collared monads of all sponge-stocks, and which, examined in their isolated condition as shown at Pl. VIII. Figs. 2-7, 10, 18, and 20, might easily be mistaken for members of the present genus. A distinctive feature pertaining to the developmental phenomena of Monosiga as compared with Codosiga, is afforded by their transverse in place of longitudinal plan of subdivision; the anteriorly produced resultant of such process of segmentation swims off as a simple collarless uniflagellate monad, and forms an independent attachment.

A.—Pedicle absent, rudimentary, or non-persistent.

Monosiga angustata, S. K. Pl. II. Figs. 31 and 32.

Body very attenuate, clavate or subcylindrical, about four times as long as broad, attached by its more slender posterior extremity, without the intermedium of a pedicle; endoplast spherical, subcentral; contractile vesicles two in number, posteriorly located. Length of body 1-2500".

Hab.—Fresh water, solitary.

Only two or three examples of this elegant little animalcule have been as yet observed, being then discovered attached to examples of a species of Cyclops obtained from a pond on Wandsworth Common. The earlier condition of this type, prior to the development of the characteristic collar, represented at Pl. II. Fig. 32, is remarkable for its conspicuous resemblance to the undeveloped and elongate collarless monads of a motile sponge-gemmule, as illustrated in various figures of Pl. IX.

Body ovate or pyriform, widest posteriorly, about one and a half times as long as broad, attached sessilely or through the intermedium of a short rudimentary pedicle; endoplast spherical, subcentral; contractile vesicles two in number, posteriorly located. Length of body 1-4000" to 1-3500".

Hab.—Fresh water, gregarious.

The zooids of this species are not unlike those of the persistently stalked marine M. ovata, but are of even more plastic consistence. Although a short pedicle was
GENUS MONOSIGA.

331

occasionally observed, the majority of examples were fixed directly to the water-weed without any such intermediate. This diverse character of the mode of attachment of the individual zooids finds its parallel in the loricated type Salpingcea amphoridium, where also a short pedicle may or may not be developed. A colony of this species was first discovered attached to decaying leaves of Valisneria from a fresh-water aquarium, and has been subsequently met with clustered in a similar social manner upon the carapace of a species of Cyclops taken from a mill-pond in St. Peter's Valley, Jersey.

At Figs. 20 and 21 of Pl. IV. two zooids are represented which, having withdrawn their collars and flagella, have assumed a semi-amœbiform contour, while the endoplasm has become highly vacuolar.

Monosiga Steinii, S.K. Pl. IV. Fig. 12.

Body elongate-ovate or subfusiform, widest centrally, tapering evenly towards each extremity, about twice as long as broad, attached immediately by its pointed posterior termination to the chosen fulcrum of support; collar nearly equalling the body in height; contractile vesicle single, posteriorly situated; endoplasm inconspicuous. **Length of body 1–1600".**

Hab.—Fresh water, attached to the pedicle of Vorticella convallaria.

Some half a dozen zooids of this species are figured by Stein* as doubtful phases of Codosiga botrytis, attached to the contractile stalk of a single example of the Vorticellidan above named. The even fusiform contour of the body, and entire absence of a pedicle, serve to distinguish this type from *M. brevipes*, which it otherwise most nearly resembles. A species apparently identical with this form has been recently observed by the author attached to the branching pedicle of *Epistylis plicatilis*.

Monosiga fusiformis, S.K. Pl. IV. Fig. 17.

Body elongate-fusiform, widest centrally, tapering and attenuate at each extremity, about three times as long as broad, fixed by the posterior extremity without any intermediate pedicle; contractile vesicles two in number, posteriorly located; endoplasm subcentral. **Length 1–2500".**

Hab.—Pond water, gregarious.

Examples of this species were found congregated upon the carapace and ovisacs of a species of Cyclops obtained from one of the water-fowl ponds in the Zoological Gardens, Regent's Park, in May 1879. Its more attenuate contour and crowded habit of growth distinguish it from *Monosiga Steinii*.

B.—**Pedicle conspicuously and persistently developed.**

Monosiga gracilis, S.K. Pl. II. Fig. 3, and Frontispiece.

Body elongate-ovate, broadest anteriorly, attenuate posteriorly, about two and a half times as long as broad, seated on a pedicle of from three to four times the length of the body, distal extremity of the pedicle retaining its original plastic state for a length nearly equalling that of the body. **Length 1–4000".**

Hab.—Salt water.

This species was obtained by the author in November 1875, attached to the stems of hydroid zoophytes and sea-weeds from the Manchester Aquarium, and also

* 'Infusionsthiere,' Abth. iii., 1878.
ORDER CHOANO-FLAGELLATA.

growing on similar organisms taken direct from the sea at Bognor, Sussex, in September 1872. In the examples derived from the last-named locality, the bodies of the animalcules presented a somewhat more rounded outline than those obtained at Manchester, both, however, agreeing in that essential plastic character of the distal region of the pedicle referred to in the foregoing diagnosis. The elegant wineglass-shaped collar in this type attains a greater comparative altitude than has been observed of any other member of this group, its total height not unfrequently equalling twice that of the body. It is at the same time of such extreme tenuity as to be scarcely visible throughout its entire length without recourse to the artificial feeding process described in the introductory remarks upon the group (see p. 326). Such feeding process at once shows up the outline of the hyaline organ with marvellous distinctness, and may be advantageously adopted in all cases where the contour of this structure is difficult to determine. An example of this species has been selected for the illustration given, in the frontispiece, of the ingestive phenomena exhibited by the animalcules of this order, the characteristic collar being somewhat fore-shortened for want of space.

Monosiga ovata, S. K. Pl. II. Figs. 33–35.

Body subject to considerable variation in its proportions, normally inversely egg-shaped or obovate, broadest posteriorly, seated upon a rigid pedicle of a length equal or subequal to that of the body. Length of body 1-5000" to 1-3500". HAB.—Salt water.

The normal contour of the body of this species closely resembles that of Monosiga gracilis with the proportions reversed, e.g. the broader region being the end next to the pedicle instead of the one forming the free or distal extremity. The pedicle is also proportionally much shorter and rigid throughout its entire length. Representatives of this species frequently occur in which the form of the body differs considerably from the above and typical state, the outline then assumed being considerably more elongate and almost subcylindrical. These elongate zooids, as shown at Pl. II. Fig. 35, are sometimes slightly constricted towards the centre, and point probably to a phase preparatory to multiplication by transverse fission. The examples supplying this description were found, in company with Monosiga gracilis, attached to filamentous marine algae collected at Bognor, Sussex, in September 1872.

Monosiga globosa, S. K. Pl. II. Figs. 4–6.

Body subspheroidal, attached to a very long, straight, and slender pedicle, whose total length equals four or five times that of the diameter of the body. Dimensions of body 1-4000". HAB.—Fresh water.

The globular contour of the body and, in fully developed zooids, the great proportional length of the supporting pedicle, distinguish this type from any of the various species here described. Propagation by transverse fission, or by the separating off from the anterior extremity of monoflagellate free-swimming gemmules, has been frequently observed; the zooid so liberated, after passing a short nomadic existence, attaches itself by its posterior extremity, and developing a pedicle and collar, grows to the parent form. Such a separated monadiform zooid, with its primitively attached state, is represented at Pl. II. Figs. 5 and 6.

Monosiga brevipes, S. K. Pl. II. Figs. 7–9.

Body in its more normal state symmetrically ovate or elliptical, the posterior and anterior extremities being equally and obtusely pointed;
pedicle rigid and very short, not exceeding half the length of the body. Length of body 1–3000" to 1–2500". HAB.—Fresh water.

The zooids of this species have been encountered by the author abundantly attached to the pedicles of the higher Infusorial types, Vorticella nebularifera, V. campanula, Epistylist flavicans, and Carchesium polypinum. They not improbable represent the so-called "squamule adhaerentes" referred to at page 325, first met with under similar conditions by O. F. Müller. As in Monosiga ovata, the form of the body is subject to considerable variations of contour. Pl. II. Fig. 8 thus illustrates an example in which the anterior extremity is so considerably prolonged as to impart to the animalcule a flask-like or bottle-shaped outline, while on other occasions, as at Fig. 9, the two apices may be so retracted as to produce an almost spheroidal shape. The pedicle, though short, is always distinctly developed, a circumstance which serves to distinguish this type from Monosiga Steinii.

Monosiga longicollis, S. K. Pl. IV. Fig. 18.

Body flask-shaped, rounded and widest posteriorly, produced anteriorly in an attenuate neck-like manner, rather over twice as long as broad; pedicle short, one-quarter the length of the body. Length of body 1–2500".

HAB.—Bog water, gregarious.

This type, which exhibits persistently a flask-shaped contour closely corresponding with that occasionally presented by Monosiga brevipes, was discovered by the author in September 1879, attached in social groups to the branching zooidium of Rhipidodendron Huxleyi, previously described.

Genus II. CODOSIGA, James-Clark.

Animalculae illoricate, spherical or ovate, attached socially to the terminations of a simple or variously branching, fixed and rigid pedicle or zoodendrium; collar well developed, enclosing the single terminal flagellum; contractile vesicles conspicuous, two or more in number, posteriorly located; endoplast anterior or subcentral; multiplying by longitudinal fission and by encystment and subdivision into spores. Inhabiting salt and fresh water.

To the single fresh-water representative of this genus, the Codosiga pulcherrima of Professor H. James-Clark, since identified with the imperfectly observed Epistylist botryis of Ehrenberg, nine well-marked additional forms have been added by the author. Some of these inhabit salt and some fresh water, while all are readily distinguishable from each other by the form of growth of the supporting stem, or by the varying contours of the individual zooids. The branching colony-stocks of Codosiga, viewed with an insufficient amount of magnification, correspond so closely in their general mode of growth with those of Epistylist, that many of them encountered without a knowledge of their true nature, by both earlier and comparatively recent investigators, have been regarded as either immature or exceedingly minute species of that genus. Stein has preferred in his lately published work to alter the designation of this generic group from Codosiga to Codonosiga, upon the ground that the etymology of the first title as introduced by Professor Clark is not perfectly correct. Adhering, however, to the recommendations of the British Association,* to the effect that all scientific titles must be regarded simply as proper names, without regard to their strict etymological construction, and that when once conferred it is desirable that they should be permanently retained, Stein's proposed alteration has not been adopted in this manual.

* 'Rules of Zoological Nomenclature,' ed. 1878.
ORDER CHOANO-FLAGELLATA.

Codosiga botrytis, Ehr. sp. Pl. II. Figs. 22–29, and Pl. IV. Figs. 6–10.

Bodies smooth and transparent, symmetrically ovate, more attenuate posteriorly, about one and a half times as long as broad; from two or three to as many as twenty or more zooids, attached to the extremity of a straight, slender, simple, rigid pedicle, whose height equals four or five times the length of the body; their junction with this structure effected through the medium of a slender flexible extension of the posterior region, which frequently presents the aspect of a distinct secondary footstalk; contractile vesicles two or three in number, posteriorly located; endoplast spherical, situated in the median line in advance of the centre of the body. Length of body, exclusive of the collar, 1–2500" to 1–2000", the collar when extended equalling the body in height. HAB.—Fresh water, gregarious.

It being now universally admitted that this species—first described in an intelligible and exhaustive form by the late Professor H. James-Clark, under the name of *Codosiga pulcherrima*—is identical with the *Epistylis botrytis* of Ehrenberg, and *Anthophysa solitaria* of Bory and Fresenius, the specific title conferred upon it by the earliest of these several investigators must necessarily take precedence of the otherwise eminently suitable one proposed by the American authority. Among the numerous specific forms of the genus *Codosiga* enumerated in this volume, the present type represents the one most generally distributed. Since first meeting with it in the neighbourhood of London in the year 1871, it has been obtained by the author from innumerable stations throughout the country. Where once found, it is, moreover, usually abundant, being eminently sociable in its habits, and not unfrequently, as shown at Pl. II. Fig. 29, covering with a miniature forest-like growth the thread-like filaments of various aquatic Confervae; the finely divided leaves of *Myriophyllum spicatum* form likewise a favourable fulcrum of support for this most elegant little species. At first sight it would appear that each separate ovate zooid springs immediately from the rigid pedicle, but a closer examination shows that each of these possesses a short, independent footstalk, which is, moreover, flexible and endowed with the vitality of the body proper. This fact may be clearly demonstrated by the observation of animalcules undergoing the process of longitudinal fission, and at which times it will be seen that the short flexible footstalk shares in the subdivision. As shown at Fig. 24, both the flagellum and the membranous collar participate in the longitudinal subdivision of the zooid, the latter structure during the process being conically contracted.

During the author's earlier acquaintance with this animalcule examples were frequently met with in which the entire surface of the body bristled with slender rod-like projections, which were at first regarded as foreign bacterium-like organisms accidentally entangled in the peripheral sarcod. Later on, however, it was determined that these structures were organically connected with the animalcule's body. It was then thought that the individuals exhibiting this peculiarity belonged to a separate species, and they were consequently figured and briefly described in the 'Monthly Microscopical Journal' for December 1871, under the title of *Codosiga echinata*. It has since been ascertained by the author that this supposed specific variety is an amoebiform condition of *C. botrytis* previous to its passing into an encysted state; the short rod-like processes corresponding indeed with the retractile pseudopodia temporarily developed under like circumstances by *Salpingoea amphoridium*, or other ordinary Flagellata. Sometimes, as shown at Pl. II. Fig. 26, these rod-like radiating pseudopodia are developed while the collar is fully expanded, but more often both this structure and the flagellum are entirely withdrawn into the substance of the body, which then presents the aspect delineated at Fig. 25. Upon this amoeboid phase ensues an encysted condition in which the entire cuticular surface becomes indurated, and the enclosed endosarc breaks up into a
number of spore-like bodies, as shown at Fig. 27. It is not improbable that previous to this encysting process, conjugation with other free-swimming animalcules is effected; but such a genetic union has not up to the present time been witnessed by the author, but is reported by Stein.

Buttschli, who has recently examined this form, is disposed to maintain that food is ingested outside the membranous collar, through vesicular extensions that may be developed at any point close to its base. This interpretation, however, together with the original separate mouth theory advanced by Professor Clark, becomes quite untenable when set side by side with the evidence recently adduced relative to the nature and function of the collar, and as explained at length in the introductory notice of this group. Although normally only two spherical contractile vesicles, as represented by Buttschli, are to be observed in the posterior extremity of the body, as many as three are not unfrequently to be found, though, as explained by Professor Clark, this is more usual in examples about to increase by longitudinal fission. The systole and diastole of each of these vesicles, as observed by the author, occupy a duration of 60"; Professor Clark, however, gives only half this time. The adherent bacteria interpretation, now abandoned, but formerly connected by the author with the echinate or ameboid state of this animalcule, is adopted independently by Buttschli in the publication quoted. Stein likewise figures an example in his recently issued volume, with a similar bacterial explanation, and also an instance in which the genetic union of a smaller free-swimming zoid with a solitary sedentary one is apparently in process of accomplishment. In both of these last-named instances, reproduced at Pl. IV, Figs. 9 and 10, it would seem probable, however, that the types figured are referable to the solitary genus Monosiga rather than to the colonially associated one now under consideration. Attention may be especially directed to the remarkable similarity that subsists between a luxuriant and subspheroidal colony-stock of Codosiga botrytis, as reproduced from Stein's work, at Pl. IV, Fig 6, and the subspheroidal or rosette-shaped gemmules, consisting of similar closely aggregated collared monads, developed by the sponge Halisarca lobularis, delineated at Pl. IX, Fig. 20. The addition of a pedicle is alone required in this latter instance to render the two monad aggregates indistinguishable.

Dr. Charles Robin has very recently figured a supposed variety of Codosiga botrytis in which the characteristic collar is replaced by four rigid cirrate processes. It is quite evident, however, that this presumed distinct variety represents merely that modified condition common to all members of the Choano-Flagellata, and specially referred to and illustrated in the description given of Salpingacea amphoridae, in which, the collar being withdrawn, simple pseudopod extensions take its place. There can further be but little doubt that the form obtained from the Victoria Docks, figured and described by the author of this treatise in the 'Monthly Microscopical Journal' for May 1869, under the title of Acineta socialis, and compared at the time with the Epistyliis botrytis of Ehrenberg, is identical with a similarly modified condition of the present species. Polymorphic tentacle-like processes approximating more closely to the pseudopodia of an ordinary Rhizopod than to the characteristic appendages of a true Acineta, were distinctly observed, and their presence accepted as rendering the relegation of the type to the order of the Suctoria entirely provisional.

Codosiga umbellata, Tatem sp. Pl. IV. Figs. 1-5.

Bodies gibbously ovate, rather over twice as long as broad, clustered in groups of from four to eight individual zooids at the terminations of a rigid tripartite, bi-tripartite, or occasionally quadripartite branching pedicle or zoodendrium. Length of bodies 1-1250". Total length of branching pedicle

* 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xxx, Heft 2, 1878.
† 'Journal de l'Anatomie et Physiologie,' Nov. and Dec. 1879.
eight or ten to twenty times that of the body of a single zooid. Contractile vesicles and endoplasm as in C. botryis. HAB.—Fresh water.

This species, first figured and briefly described by the author under the above title in the 'Monthly Microscopical Journal' for December 1871, represents, both as regards the dimensions of the individual zooids and the size and proportion of the branching pedicle, the largest, and at the same time one of the most symmetrically developed members of this notably elegant genus so far discovered. An adult colony, inclusive of the branching pedicle, not unfrequently attains a total height of as much as the 1-62nd part of an English inch, and is therefore easily recognized with a comparatively low power of the microscope. It is almost beyond doubt a variety of this species that is figured and described by Mr. Tatem in the 'Transactions of the Royal Microscopical Society' for the year 1868, as a new type of Epistylis, and which he proposes to distinguish by the title of Epistylis umbellatus. The magnification of 300 diameters only, employed by Mr. Tatem, was not sufficient to enable him to recognize the hyaline collar and flagellum surmounting the distal extremity of each animalcule's body, but that he did not prove the existence of true cilia is equally apparent on reference to his figures, where in place of the continuous ciliary wreath characteristic of the ordinary Epistylids, a mere suspicion only of such structure is indicated at the two antero-lateral margins, and which may be easily identified with the imperfectly seen outline in profile of the transparent infundibulate collar. The dimensions, again, of the individual animalcules and branching pedicle of Mr. Tatem's supposed Epistylis accord so closely with those of the species now under discussion, that there can be but little uncertainty as to the near, if not absolute, identity of the two forms, and on this account Mr. Tatem's proposed specific title is here retained, and his own name associated with the nomenclature of the species. The method in which the symmetrically branched pedicle of Codosiga umbellata is produced is not very readily comprehended. The example figured by Mr. Tatem would seem to afford an instance of a quadripartite branching variety, but the tripartite one is the more prevalent. It might have been anticipated that this quadripartite type would have been the most frequent as the resultant of a single zooid twice divided by longitudinal fission, the four individuals thus produced then making a new start afterwards to repeat the process. The figure supplied by Mr. Tatem in fact shows four individuals at the extremity of each of the sixteen branchlets of the pedicle, a circumstance which exactly bears out such an interpretation. In all cases examined by the author, however, the pedicle was either tripartite or bi-tripartite (see Pl. IV. Figs. i and 3), the termination of each branchlet bearing, moreover, a considerable number of collared zooids. The foregoing explanation is therefore altogether inapplicable in these instances, and it remains an open question whether this distinct order of growth is not possibly indicative of a separate specific organization. Not having, however, as yet met with the quadripartite form figured by Mr. Tatem, and thus obtained an opportunity of instituting the necessary comparisons, the testimony so far elicited is here accepted in favour of their specific identity, and they are here distinguished as varietal forms only of Codosiga umbellata. In the more frequent tripartite and bi-tripartite pedicle of this specific type, it might in another direction be not inappropriately suggested that we find foreshadowed the same potential energy that produces in connection with the essentially similar collar-bearing monads of certain calcareous and siliceous sponge-forms their characteristic tripartite or bi-tripartite spicula. In addition to obtaining examples of Codosiga umbellata from various localities near London, the author has also received it growing upon Anacharis from the neighbourhood of Stourbridge, Worcestershire, in company with Opercularia nutans and other Infusorial forms remitted by Mr. Thomas Bolton.

Various altogether irregular stock-forms of this species are figured by Stein in his recently published volume, one of the more prominent of these being reproduced at Pl. IV. Fig. 5. That authority has further conferred upon the present species the distinct generic name of Codonoecladium, with reference evidently to the branched character of the supporting pedicle. The transition, however, from the
forms in which the zooids are almost, but not quite, sessilely attached to the summit of the primary stalk, as in *C. botrytis*, to those in which the latter structure is conspicuously branched, as in *C. umbellata*, and as shown by such types as *C. pyriformis*, *C. grossulariata*, and *C. candelabrum*, hitherto unknown to Stein, is however so gradual that an independent generic title in the present instance cannot be consistently maintained.

In examples of *Codosiga umbellata* examined by the author while going to press—November 1880, received from Mr. John Hood, of Dundee—a phenomenon has been observed not previously recorded of any other representative of the present Flagellate order. These having been submitted to somewhat undue pressure, threw out around their bodies a hyaline film of sarcode, which imparted to them the aspect of being enclosed within independent sheaths or loricae, ultimately retracting both their collars and flagella. This pressure being removed, the bodies resumed their accustomed shape and the flagella and collars were again extended. In the delineations of *Codosiga botrytis* given by O. Bütschli, one abnormal example, figured and described as possessing a delicate viscid case, apparently represents a closely parallel condition of metamorphosis.

Codosiga allioides, S. K. Pl. II. Figs. 1 and 2.

Animalcules as in *C. botrytis*, but associated upon a multicapitate pedicle or zoodendrium, the main stem developing from one point as many as ten secondary branches of equal length, at the extremities of which the animalcules are grouped in sessesile social clusters; contractile vesicles and endoplasm conspicuous. Length of bodies 1–165". Secondary stalks six or seven times, and primary stalk over twelve times the length of the supported zooids. HAB.—Fresh water.

The umbellate zoodendrium of this variety exhibits a plan of ramification that corresponds substantially with the floral umbel of the genus *Allium* and its allies among vegetable types, and upon which account the present specific title has been adopted. In another direction this species may be said to present the appearance of a number of colony-stocks of *Codosiga botrytis*, united at the bases of their respective pedicles to one common main rachis. In the single example that has yet been met with, there were no less than ten of these branches bearing each from three to six or seven animalcules. The length of each secondary stalk was rather longer in proportion than the single one of *C. botrytis*, while the main rachis measured a little over twice the length of the secondary ones. A corresponding diversity in size also subsists between the individual zooids of this type and those of *C. botrytis*, the latter being considerably smaller. The single specimen here figured and described was found growing on *Nitella* taken from a pond in the neighbourhood of London, supplied to the author by Mr. William Gay, F.R.M.S. From *Codosiga umbellata*, with the irregular growth-form of which, as reproduced from Stein's work at Pl. IV. Fig. 5, it to some extent agrees, the present species may be readily distinguished by the lax and undulating instead of rigid and rectilinear character of the supporting pedicle.

Codosiga cymosa, S. K. Pl. III. Figs. 3–7.

Zooids symmetrically ovate, stationed separately, upon short independent footstalks, at the extremities of a cymose or corymbiform, profusely branching pedicle or zoodendrium. Length of bodies 1–500", of main rachis 1–500" to 1–250". HAB.—Salt water.

The number of animalcules included in a single colony-stock of *Codosiga cymosa* exceeds that of any other species of the genus yet discovered, the luxuriantly branching pedicle not unfrequently supporting, as shown in the accompanying plate, as
many as, or more than, one hundred individual zooids. With the exception of
C. pyriformis, it is further the only example, out of the nine known species of
the genus, that has been found in salt water, though doubtless future investigation
will reveal the existence of many additional forms. The species as here figured and
described was met with in November 1875, attached in great abundance to the
empty cells of Polyzoa and Sertularian zoophytes, taken from the marine tanks of
the Manchester Aquarium, at that time in the author's charge. As these zoophytes
were in the first instance derived from various remote localities, it is not possible to
fix the exact station on the British coast-line from whence they were originally
imported. The branching pedicle or zoendrium of *Codosiga cymosa* varies con-
siderably in different colonies; where a large number of zooids are present the
characteristic corymboid type is predominant, and the colony-stock as a whole con-
siderably resembles in external contour the corymbiform flower-spike or panicle of
the sea-lavender (*Statice limonium*). Pl. III. Fig. 7, represents an abnormal
growth of this species in which the complete colony-stock presents in the arrange-
ment of its constituent zooids an aspect highly suggestive in miniature of the zoa-
rium of the polyzoic genera *Aulopora* or *Hippothoa*. This growth-form is produced by the
abnormal mode of gemmation. Usually the tree-like colony is formed by the
irregular dichotomous branching of the pedicle, the primary animalcules at the base
of these branches becoming obliterated or losing their individuality by their onward
growth. In this instance, however, each new bud, in taking its origin from the base
of its predecessor, has left the preceding one intact, while at the same time the
gemmation is much more sparse, and the pedicle to each individual is unusually
prolonged. As shown at Fig. 4, it mostly happens that all the animalcules com-
posing one large colony-stock, are so disposed as to face in the same direction, a
formula of growth remarkable for its symmetry and elegance. At Pl. III. Fig. 6a
will be found delineated a zooid in which the collar is retracted and the body, after
throwing around it a hardened cyst-like investment, has divided itself into two equal
parts. This no doubt represents the initial stage of a further breaking up of the
entire body into sporular elements. As shown at Fig. 5a, there appears to be a
tendency in this species to occasionally produce zooids of abnormal size. This
phenomenon is probably also connected with the function of reproduction, and is
suggestive of the like development, for reproductive purposes, of animalcules of
abnormal size, which obtains in the genus *Zoothamnium*, among the higher Peritri-
choous Infusoria.

Codosiga grossularia, S. K. Pl. II. Figs. 10 and 11.

Zooids subspheroidal, attached in small clusters, through the inter-
medium of short independent pedicles, to a simple or sparsely branching
main rachis. Length and diameter of bodies of animalcules 1–2500"; height
of main rachis five or six to ten times the length of the supported zooids,
secondary branchlets not equalling or but slightly exceeding their diameter.

Hab.—Fresh water.

This species may be easily recognized by the globose form of the bodies of the
separate zooids, all the remaining representatives of the genus hitherto met with
exhibiting a more or less ovate outline. The main stem remains undivided for
a considerable distance, and is sinuous, as in *C. alloides*. The secondary subdivisions
of the pedicle rarely exceed in length the diameter of a single animalcule, and
being given off in close proximity to one another, impart to the complete colony-
stock a considerable resemblance to a small bunch of currants. This species is
of rare occurrence, two or three isolated examples only having been so far met
with. At Plate II. Fig. 11 a colony-stock of three zooids only is represented, which
are protruding digitiform pseudopodia from their lateral peripheries in a manner cor-
responding to that which has been previously recorded of *C. botrytis*. The examples
furnishing this description were obtained by the author from a pond in the North London district supplied from the New River Waterworks.

Codosiga candelabrum, S. K. Pl. III. Figs. 8 and 9.

Zooids elongate, gibbously ovate, from two and a half to three times as long as broad, forming small erect clusters and attached by secondary footstalks of their own altitude to the extremity of a pedicle of almost twice that height. **Length of bodies 1–2000".**

HAB.—Fresh water, on Entomostraca.

This type was obtained in March 1876, from the fresh-water dykes in the neighbourhood of Great Yarmouth, Norfolk, all the specimens then examined being found attached to the ovisacs and limb-joints of a species of *Cyclops*. In form and size the individual zooids correspond closely with those of *Codosiga umbellata*, the shortness of the primary pedicle, the length of the secondary ones, and the erect position maintained by the animalcules with relation to their supporting stem, distinguish it at once, however, from either the adults or from a young colony of that species, for which it might possibly at first sight be mistaken. Except for the small number of animalcules included in one colony-stock, four being the greatest number that has been yet observed, this species in miniature recalls to mind the higher Infusoria *Epistylis digitalis*, or *E. anastatica*, found growing with it on the same Entomostraco.

Codosiga pyriformis, S. K. Pl. II. Fig. 14.

Zooids subpyriform, attached in small clusters by distinct rigid footstalks, which equal their own bodies in length, to the apex of a long, simple, and slightly sinuous primary pedicle. **Length of bodies 1–4000".**

HAB.—Salt water.

This type closely approaches the cosmopolitan fresh-water species *C. botrytis*, previously described. In addition, however, to its salt-water habitat and the broader contour of the animalcules, it may be readily distinguished from that species by the more attenuate and less rigid growth of the primary pedicle, by the greater length of the secondary ones, and the in general more erect position assumed by the individual zooids; this latter feature is a necessary accompaniment of the comparatively rigid consistence of the short secondary pedicles which immediately support the animalcules. It would seem to be not altogether improbable that the so-called variety of *Codosiga botrytis* recently figured and described by C. Robin, characterized by similarly developed secondary footstalks, represents the type now under consideration. This supposition receives substantial support from the circumstance that, although no habitat is recorded, the majority of accompanying infusorial types described by him are essentially inhabitants of salt water.

The examples of *Codosiga pyriformis* examined by the author were obtained growing abundantly on the deserted polyparies of Hydroid zoophytes and Polyzoa received from Brighton.

Codosiga furcata, S. K. Pl. II. Figs. 15–19.

Zooids shortly and obtusely ovate, attached singly or in pairs by footstalks of about their own length to a short and irregular, furcately branching pedicle. **Length of bodies 1–3300", height of primary pedicle rarely exceeding that of a single zooid.** **HAB.**—Fresh water.

This species may be readily distinguished from all the preceding forms by the character of the pedicle which commences branching at a short distance only from
its origin. So far but a single colony of two animalcules has been met with by
the author, but there can be little doubt that it is identical with that uncertain form
figured by Stein in his 'Die Infusionstiere auf ihre Entwickelungsgeschichte,' 1854, as
probably the young condition of one of the branching Vorticellidae, or rather as an
Acineta-phase, which he at that time believed preceded the perfect ciliated state of
those more highly organized Infusoria. The magnifying power employed by Stein
revealed only the two lateral margins of the transparent collar, which thus resembled
the semi-withdrawn sectorial fascicles of various typical Acineta.

As many as ten zooids are comprised by Stein in the largest colony-stock he
illustrates. The single specimen encountered by the author was obtained from a
pond near South Norwood, London, in June 1877.

Codosiga Steintii, S. K. Pl. II. Fig. 20.

Zooids evenly ovate, stationed singly, or during the process of sub-
division in pairs, at the extremities of a slender, dichotomously branching
pedicle or zoodendrium. Length of bodies 1–3000"; primary, secondary
and succeeding subdivisions of the pedicle mostly equalling about twice the
length of the supported zooids. HAB.—Fresh water.

The above specific title is conferred upon the animalcule figured by Stein in
'Wiegman's Archives,' Taf. ii. fig. 36, 1849, as the probable young of *Epistylis
nutans*;* these figures indicating, however, by the presence of the setum-like
process on each side of the anterior border, the possession of an imperfectly observed
but characteristic collar. In the illustrations of this form referred to and here repro-
duced, as many as fourteen zooids, in various processes of development, are repre-
sented upon the branching colony. The interspace between the basal attachment
and first division of the pedicle, as also those between its subsequent ramifications,
vary from the same to that of about twice the length of the body of the separate
zooids; this more extended proportionate distance maintained between the ramifications
of the pedicle readily distinguishes the species from *Codosiga furcata*, with
which the contour of this structural element most closely coincides.

Codosiga assimilis, S. K. Pl. II. Fig. 21.

Zooids few in number, ovate or subpyriform, stationed singly at the
extremities of a branching pedicle, the main rachis of which, equal to
about four times the length of the zooids' bodies, is straight and simple,
dividing then in a dichotomous manner, and forming short ramifications
not exceeding the length of the animalcule's body. Length of these latter
1–1800". HAB.—Fresh water.

This type is likewise figured by Stein, in company with the two preceding forms,
as a probable early condition of *Epistylis nutans*, the mode of growth of the pedicle,
and proportionately larger size of the animalcules, indicating, however, its specific
distinctness. Pritchard, in reproducing Stein's figure, has proposed to identify it
with the *Epistylis* (*Codosiga*) *botryis* of Ehrenberg, but the compound ramification
of the distal region of the pedicle demonstrates its non-correspondence with that
simply pedicellate type. In this last named feature the pedicle of *Codosiga assimilis*
agrees more closely with that of *C. grossularia*, while the contour of the zooids
nearly resembles that of the marine *Codosiga pyriformis*. These latter are at the
same time of considerably larger dimensions than those of either of the last-named
varieties.

By accident, the illustration of this species has been included in the index to
Pl. II. as a second example of *C. Steinii.*

* See also Pritchard's 'Infusoria,' pl. xxvii. fig. 22.
GENUS ASTROSIGA—DESMARELLA.

GENUS III. ASTROSIGA, S. K.

(Greek, astron, star; siga, silence.)

Animalcules naked, free-swimming, united by their posterior extremities so as to form compound stellate or subspheroidal clusters; anterior region bearing a single long terminal flagellum, whose base is encircled by a well-developed, extensile and contractile, hyaline collar.

Astrosiga disjuncta, From sp. Pl. II. Figs. 12 and 13.

Zooids fusiform, tapering posteriorly, and there united to one another by the attenuated and almost pedicle-like elongations of the body-substance of this region. Length of zooids 1-1600". HAB.—Fresh water.

The new generic title conferred upon this species has been established by the author for the reception of the form figured and described by De Fromentel* as a species of Uvella. In his description, which is most meagre, and also in his illustration, each unit is represented as bearing three short flagella, which, from their position and direction, it is evident represent a central flagellate appendage and the two lateral margins of the hyaline infundibulate collar of a typical collared animalcule, as seen under inadequate magnification. The figure given by De Fromentel is reproduced at Pl. II. Fig. 12, as also another representation, Fig. 13, slightly enlarged from this, with the anterior margin of the collar, which escaped that authority’s notice, alone filled in. The example figured represents a stellaeform colony composed of five zooids only, but doubtless much larger ones exist. Taken collectively, the colony-stocks of this specific type present a close resemblance to the monad-clusters of Codosiga botrytis separated from their common footstalk and floating freely in the water after the manner of the detached monad aggregates or “coenobia” of Anthophysa vegetans. The more attenuate contour of the constituent monads of Astrosiga at the same time precludes the inference that might otherwise be arrived at, that it represents a detached colony of the first-named species.

GENUS IV. DESMARELLA, S. K.

(Dim. of Greek desmos, chain.)

Animalcules naked, free-swimming, forming compound colonies, and united to one another by their lateral surfaces, without the intermedium of a pedicle or other supplementary element. Flagellum single, terminal, its base encircled by a well-developed, extensile and contractile, hyaline collar.

This and the preceding genus constitute the only free-swimming compound colony forms of the Choano-Flagellate order as yet discovered, though further investigation will probably lead to the recognition of as large a number of varieties as are here shown to obtain among the sedentary species.

Desmarella moniliformis, S. K. Pl. II. Fig. 30.

Zooids symmetrically ovoid, arranged in single chain-like series, each colony-stock containing from two to as many as eight individual units; endoplast spherical, subcentral; contractile vesicles two or more in number, posteriorly located. Length of individual zooids 1-4000".

HAB.—Salt water.

* ‘Études sur les Microzoaires,’ Paris, 1876.
Examples of this specific type have been obtained in considerable abundance both in sea-water from the fish-house at the Zoological Gardens, Regent’s Park, during the month of April 1877, and since then in water from the open sea at St. Heliers, Jersey. Propelled by the rapid motion of their flagella, the floating colonies of this species pass through the water with such rapidity that it is difficult to retain them in the field of view when a high power of the microscope is being used, and it is only when naturally at rest, or the animalcules become entangled among surrounding substances, that their true structure can be satisfactorily determined. The mode of growth of this type seems to indicate that the moniliform colony is produced by the successive longitudinal fission of the primary individuals, though the process has not yet been directly observed. In the larger colonies the perfect chain of animalcules usually assumes a rounded crescentic outline. The individual zooids appear to possess a more indurated cuticular surface than is met with in any other representative of this group, and up to the present time no trace of a plastic or amœboid condition has been detected. The contractile vesicles are, as with the more ordinary members of this order, posteriorly located. The remarkable resemblance that subsists between a colony of this specific form and the portion of a single segment of the collar-bearing zooids of the “ampullaceous sacs” of certain sponge-forms will be made apparent on comparing the illustration given of this species with Pl. IX. Fig. 2 representing such an isolated fragment of the ampullaceous sac of the spiculeless sponge *Halisarca Dujardinii.*

Small colonies of this species, consisting of from two to four laterally united zooids only, have been quite recently, November 1880, detected by the author in sea-water, remitted with living Polyzoa by Mr. Thomas Bolton from the Aston Aquarium, Birmingham.

Desmarella phalanx, Stein sp.

Zooids resembling those of *Desmarella moniliformis*, forming similar floating chain-like colonies, but inhabiting fresh water.

This species is figured by Stein* under the designation of *Codonodesmus phalanx*. While its fresh-water habitat renders it probable that the form is specifically distinct from the type last described, there can be no doubt as to their generic identity. Since, however, the title introduced by the author has been already made use of in connection with illustrations and textual reference on two occasions prior to the appearance of Stein's volume,† such previously proposed one necessarily takes the precedence. In one of the chain-like colony-stocks of the present type, figured by Stein, no less than eleven zooids are laterally united, while in another, consisting of eight animalcules, the group is in process of division into two smaller aggregates of four units each. Stein apparently entertains doubts as to whether this species represents a permanent and independent stock-form, he having connected with the generic and specific titles introduced by him a provisional significance only.

Fam. II. SALPINGŒIDÆ, S. K.

Animalcules secreting and inhabiting independent or socially united protective sheaths or loricae, which are either free-floating or attached, in a sessile manner or through the medium of a distinct pedicle, to aquatic objects; flagellum single, terminal, encircled laterally by a well-developed membranous collar; contractile vesicles usually two or more in number, posteriorly located; endoplasm subcentral. Inhabiting salt and fresh water.

* 'Infusionsthiere,' Abth. iii., November 1878.
GENUS SALPINGŒCA.

GENUS I. SALPINGŒCA, James-Clark.

Animalcules solitary, plastic and variable in form, secreting and
inhabiting a fixed, chitinous, transparent sheath or lorica; the lorica
either sessile or mounted on a more or less distinctly developed pedicle;
mostly freely movable within and not attached permanently to the lorica,
but sometimes united to it posteriorly through the intermedium of a
pedicle-like extension of the body-sarcode, or through the medium of several
pseudopodic prolongations; contractile vesicles conspicuous, two or more in
number. Inhabiting salt and fresh water. Increasing usually by transverse,
rarely by longitudinal fission and by subdivision into spores.

The animalcules of this genus correspond in form and aspect with those of
Codosiga and Monosiga, indicating in the great plasticity of their sarcode, as also in
their isolated mode of growth, their more close affinity with the latter. The
diversely shaped and elegant transparent loricae secreted and inhabited by the
numerous members of the genus Salpingœca, readily distinguish them from those of
the preceding groups. Pursuing that comparison between these lowly organized
types and the higher infusorial forms which has been previously instituted, Salpin-
gœca may be said to exhibit a relationship towards Monosiga analogous to that which
subsists between the loricated genera Cotturinia or Vaginicola and the simple illori-
cate genus Vorticella. Professor James-Clark, who first established the present
generic group, introduced three forms as claimants for admission to it. All of these
have been met with by the author in British waters, while upwards of twenty forms
new to science are here added to them. The process of alimentation in Salpingœca
corresponds exactly with what has been described of Codosiga or Monosiga, there
being no distinct mouth as at first presumed by Professor Clark, but the inceptive
or oral area being common to the whole region enclosed by the membranous collar,
and the ingested food-particles being captured with the assistance of this structure.
Propagation by transverse fission, as in Monosiga, as also by the breaking up of the
body into sporular elements, has been satisfactorily determined in connection
with several specific types.

A.—PEDICLE ABSENT, RUDIMENTARY, OR EXCEPTIONALLY
DEVELOPED.

Lorica sessile, flask-shaped, rounded at the base, produced anteriorly
into a long, narrow neck, aperture of the neck slightly everted; con-
tained zooid adapting itself to the shape of the lorica, inflated pos-
teriorly and developed anteriorly into a slender neck-like portion; con-
tractile vesicles three or four in number, posteriorly located; endoplast
spherical, subcentral. Length of lorica, including the neck, 1—3350" to
1—2500"; diameter of the expanded base 1—4000".

HAB.—Fresh water, attached gregariously to Confervæ and other
aquatic plants.

Var. a.—Same as the above, but the lorica mounted on a very short and
rudimentary pedicle.

This animalcule appears to be the most abundant and widely distributed repre-
sentative of the collar-bearing Flagellate order so far discovered. First introduced
to the notice of the scientific world by Professor H. James-Clark,* it has been met
with by the author in incredible numbers coating the filaments of various confervoid
algae and other water plants taken from numerous widely separated localities. A
tolerable idea of the gregarious habits of this Flagellate animalcule, as manifested
under favourable conditions, may be gained by reference to Pl. V. Fig. 1, representing
the portion only of a colony attached to a single cell of one of the filamentous
algae viewed with a magnifying power of about 600 diameters. The lorica, which
throughout Salpingaea and the three succeeding genera furnishes as a rule the only
safe and reliable means of arriving at a satisfactory diagnosis of the species, is in
this particular instance strongly suggestive of a Florence flask, or the more familiar
caraffe that forms the necessary adjunct of the domestic toilet-table. With these
it likewise vies in its crystalline transparency, which thus freely permits a clear and
uninterrupted view of its living occupant.

The contained zooid itself, whose hardened exudation has built up its crystal
cell, closely corresponds with that of a Codosiga or Monosiga, but exhibits a still
greater amount of plasticity and tendency to alter its shape than has been observed in
either of those two genera. The animalcule, which after secreting its lorica lies entirely
free within it, occupies in its normal condition about one-half of its cavity, as repre-
sented at Pl. V. Fig. 2, the film-like collar and flagellate appendage projecting beyond
the distal expansion of the neck of the lorica. It frequently happens, however, that
the sarcode body occupies a considerably larger portion than one-half of the cavity
of its lorica, and it is under these conditions that the animalcule usually exhibits its
most characteristic polymorphic properties. At such times the hyaline collar
disappears, having been altogether withdrawn into the substance of the body; the
flagellum is soon retracted in a similar manner, and the whole animalcule thus
becomes to all appearance one homogeneous mass of protoplasm. On arriving at
this stage, or even before the absorption of the flagellum, however, this little speck of
sarcode, apparently cramped and confined by the walls of its domicile, has com-
 menced to protrude or bubble over, as it were, from the orifice of the lorica, the
sarcode thus projected exhibiting remarkably diverse contours. Figs. 5 to 7 of the
plate representing this species serve to illustrate the more typical modifications that
may be assumed under the above conditions by the extended sarcode. Fig. 5, for
instance, represents a phase in which, the collar being retracted, the flagellum still
remains intact, and projects from a lobe-like extension of the excurrent sarcode. At
Fig. 7 the flagellum is entirely withdrawn, and the mass of protruding sarcode, greatly
increased in bulk, is separated into numerous digitate prolongations, imparting to the
animalcule a general aspect strongly suggestive of an example of the loricated Rhizo-
pod Diffugia, with its pseudopodia extended, and of which genus, had it been only
encountered in this stage, it might have been consistently accepted as a minute species.
Fig. 6 represents a third variety of the many-protean forms assumed by this animal-
cule, and in which the projecting sarcode is split up into innumerable fine divisions
after the manner of the pseudopodia of the genus Gromia. We have in this
instance, probably, a phase exhibiting an abnormal disintegration of the hyaline
collar previous to its complete absorption, and corresponding in kind, though exceeding
it in degree, to that one reported by C. Robin of Codosiga botrytis, in which, as already
related, the collar was replaced by four processes resembling setæ. The import
of the foregoing singular modification of the sarcode of Salpingaea amphoridium
does not however culminate in its mimetic resemblance to certain ordinary Rhizo-
pods. There is undoubtedly correlated with this phenomenon one of the most
important phases of the animalcule's reproductive functions. It has indeed been
ascertained by repeated observation on the part of the present author, that the
redundant mass of sarcode extruded from the interior of the lorica under the
various forms described, is ultimately severed from the parent mass, and after a
short lease of liberty reattaches itself and becomes developed into a collared zooid
resembling that from whence it sprang. The parent animalcule, after this budding
or practically transverse fission process, diminished considerably in size, assumes its

* 'Memoirs of the Boston Society of Natural History,' vol. i., 1868.
pristine contour, and developing a new hyaline collar and flagellum, is not to be distinguished from the ordinary zooids with which it is associated. That portion of the sarcode which is extruded and breaks away in the manner just described, is found in the case of the species now under discussion, to uniformly assume a persistent and highly characteristic shape. This, as shown at Pl. V. Figs. 8 and 9, may be compared to that of a minute, stellate, free-swimming Amœba corresponding closely with the type described by Dujardin under the title of *Amoeba radiosa*, but of much smaller comparative proportions and with shorter pseudopodia. In close proximity to the larger colonies of this species, minute, floating, stellate, amœboid zooids, identical in form with those whose detachment has been actually observed, are almost invariably met with, these at the same time retaining a marked resemblance to the phase assumed by the sarcode when issuing from the lorica as shown at Fig. 7, allowing for that slight contraction and general pulling together of its substance which ensue upon its detachment from the parent mass.

Professor James-Clark, in his original account of this species, attributes to it a distinct oral and anal aperture, lying somewhere near the base of the flagellum. This interpretation of its alimentary apparatus has, however, as in the case of all other members of the Choano-Flagellata, to be finely dismissed. Carmine, when administered, was intercepted and ingested under circumstances and in a manner absolutely identical with what has been already described at page 326 of *Monosiga gracilis*, while digested particles were observed to pass out in a similar manner from any part of the area confined by the base of the hyaline collar. Professor Clark further describes the flagellum as usually assuming a rigid and arcuate deportment; this aspect, however, is only the optical impression imparted at first sight through its exceedingly rapid revolution, an explanation which is satisfactorily confirmed by introducing carmine and watching the course of the currents produced in the manner already detailed. The duration of time occupied between the systole and diastole of each of the three or four conspicuous contractile vesicles situated at the lower extremity of this animalcule's body, average, in accordance with the author's observations, from thirty to fifty seconds. The duration of time between the expansion and contraction of these special vesicles, appears to differ considerably among allied members of the same genus, and furnishes probably a supplementary character for specific diagnosis.

While inspecting the manuscript note-books kindly placed at the author's disposal by Mr. Carter, a drawing has been noticed which beyond doubt represents several examples of a species closely allied to the present one, though, so far as can be judged from the comparatively low power of magnification employed in their delineation, the necks of the loricae would appear, proportionately, to be considerably shorter. The drawing quoted, indicating by the short diverging lines at the apex of each lorica the presence of the characteristic collar and central flagellum, is with Mr. Carter's permission reproduced at Pl. III. Fig. 1. Beyond the registration of their having been obtained from fresh water at Bombay in the year 1855, no written details are preserved. The *Chytridium ampullaceum* of Braun* presents a remarkable superficial resemblance in both form and habits of growth to the minute Flagellate type now under discussion. No trace, however, of the flagellum or collar-like appendage, as distinctly marked in the preceding instance, is exhibited in the illustrations quoted, but merely a short conical projection beyond the orifice of the flask-shaped lorica, somewhat resembling a minute pseudopodic protrusion, but which may at the same time be the conical operculum of a genuine *Chytridium*. Stein, in his recently published volume,† appears inclined to identify the present form with Braun's type, and at the same time associates with the title of *Salpingoeca amphoridium* an elongate form altogether distinct from the one originally figured and described by Professor H. James-Clark. Upon this more elongate type the author has consequently conferred in this volume the new name of *Salpingoeca Steinii*. None of the various polymorphic phases of the present species, as here figured and described, appear to have been noted by Professor Stein.

Examples in which, as at Pl. V. Fig. 3, the lorica is mounted on a very short or rudimentary pedicle, are not unfrequently met with among the more ordinary sessile specimens.

Lorica sessile, sub fusiform or vase-shaped, widest centrally, tapering equally towards the two extremities, but expanding again anteriorly into a somewhat prolonged and everted neck; contained animalcule flask-shaped, as in S. amphoridium, but of larger size. Length of lorica 1–1600".

HAB.—Fresh water, solitary.

The elegant vase-like contour of the lorica of this species readily distinguishes it from the preceding form. Though tapering gradually to a slender point at the posterior or proximal extremity, it has not yet been found in any instance to develop a distinct pedicle, as not unfrequently occurs with Salpingœca amphoridium. It is, furthermore, much less plentiful than that species, and must be described as of solitary rather than gregarious habits. The withdrawal of the flagellum and collar, and the exudation of the sarcode, in a manner parallel to that already described of S. amphoridium, have been repeatedly observed. One of the more prominent phases of these protracted changes will be found illustrated by Fig. 28 of Pl. V., in which instance the superabundant sarcode is exuding in the shape of an irregular lobate process, while in Fig. 27, representing the same zooid as observed fifteen minutes later, and in which the excurrent sarcode has broken away, the animalcule has once more assumed its normal shape and condition, the body now filling little more than half of the cavity of the lorica. Still more recently, April 1877, an example of multiple fission or breaking up of the parent zooid into spore-like bodies, preceded by retraction within its lorica and a process of encystment, has been observed. Fig. 31 represents an interesting phase of this process, in which the numerous monoflagellate zooids, the result of such a sporadic mode of reproduction, are issuing from the aperture of the lorica. The pulsations of the contractile vesicle in this species occur at longer intervals than in S. amphoridium, a period of from eighty to one hundred seconds being, as so far observed, the average time occupied between the systole of each individual vesicle.

O. Bütschli* has recently described an animalcule identical with the present form under the name of Salpingœca Clarkii: the present title, bestowed upon it in the author's communication to the Linnaean Society in June 1877, quoted also in the 'Annals of Natural History' for January 1878, necessarily, however, takes precedence of this later one.

Salpingœca Steini, S. K. Pl. V. Figs. 10–12.

Lorica sessile, sub fusiform or vase-shaped, about two and a half times as long as broad, attenuate and pointed posteriorly, tapering towards the anterior region, but expanding again and forming an everted neck; contained zooid flask-shaped, with an inflated basal and attenuate neck-like portion occupying about one-half of the cavity of the lorica; contractile vesicles two or more in number, posteriorly located; endoplasm spherical, subcentral. Length of lorica 1–600".

HAB.—Fresh water, forming gregarious rosette-shaped clusters.

This species, figured by Stein† as synonymous with the Salpingœca amphoridium of H. James-Clark, is evidently a perfectly distinct type, whose more elongate lorica

* 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xxx., 1878.
† 'Infusionsthiere,' Abth. iii., 1878.
GENUS SALPINGŒCA.

accords so closely with that of S. fusiformis, previously described, that but for its marked gregarious habits of growth it would be difficult to distinguish it from that species. By Stein, it is represented as forming more or less considerable stellate or rosette-shaped clusters upon the branching pedicle or zoödendrium of the Peritrichous type Epistylis anastatica; it has recently been met with by the author forming similar clusters on the retractile pedicles of Vorticella nebulifera, collected in the neighbourhood of Acton. The author has much pleasure in associating with this species the name of its eminent discoverer.

Salpingœca minuta, S. K. Pl. III. Figs. 10-12.

Lorica sessile, ovate or conical, rounded and widest basally, tapering evenly towards the apical extremity, but not prolonged in a neck-like manner; the anterior aperture not everted. Length of lorica 1-4000".

HAB.—Fresh water, attached to the loricae of other flagellate animalcules; solitary or sparsely scattered.

This diminutive type has up to the present time been met with attached only to the conjoint loricae or polythecium of the minute Flagellate form Dinobryon sertularia, hereafter described, and under which conditions it has been obtained in tolerable abundance. On account of its extremely small size, the body within the lorica frequently not exceeding in length the 6000th part of an English inch, a more than ordinarily high power is required for its satisfactory examination. An interesting process of gemmation similar to that recorded of two former species has been observed also in this pigmy representative of the genus. At Fig. 12 of Pl. III. an example is afforded of a zooid with the sarcode flowing out of the aperture of the lorica, the flagellum being as yet unretracted, while at Fig. 10, which represents two animalcules growing upon an empty cell of Dinobryon sertularia, a small rounded body attached below and indicated by the letter a, is evidently the result of the budding-off of one of these zoödids, requiring but a brief interval for its development into the characteristic parent form.

Salpingœca pyxidium, S. K. Pl. III. Fig. 16.

Lorica sessile, obovate, attached by the more pointed posterior extremity, the larger and distal end slightly involute round the edge of the minute terminal aperture; contained animalcule subglobose, filling the anterior half of the cavity of the lorica. Length of lorica 1-4000".

HAB.—Fresh water, solitary.

The dimensions of the lorica of this species correspond closely with those of S. minuta, in shape it is likewise conical, but the proportions are exactly reversed, the free end being considerably the larger. The aperture also does not occupy the whole of the anterior border as in all the species hitherto described, but only a small central portion, while the margin surrounding it is involute, thus imparting to the lorica, as seen in optical longitudinal section, a somewhat heart-shaped contour. A single example only of this species has been so far met with.

Salpingœca amphora, S. K. Pl. V. Fig. 13.

Lorica vase-shaped, attenuate posteriorly, having a neck-like constriction near the anterior margin, the greatest width being immediately beneath this region; no pedicle. Length of lorica 1-2000".

HAB.—Fresh water, solitary.
ORDER CHOANO-FLAGELLATA.

In the shape of the lorica this species most nearly resembles the pediculate marine variety *S. urceolata*, delineated in the same plate. The only example yet found was attached to the carapace of the Entomostracaon *Diaptomus castor* obtained from a pond on Wandsworth Common in April 1877.

Salpingoeca cylindrica, S. K. Pl. VI. Fig. 37.

Lorica sessile, subcylindrical, slightly widest posteriorly, about one and a half times as long as broad; contained animalcule elongate-ovate, attached by its posterior extremity to the bottom of the lorica, its distal end level with the orifice of this structure. Length of lorica 1-325°.

HAB.—Fresh water, solitarily.

The simple subcylindrical lorica of this species agrees most nearly with that of the marine form *Salpingoeca petiolatum*, and may be said at the same time to correspond closely in miniature with that of many of the sessile Peritrichous *Vaginicolae*. The only example yet observed was found upon *Converva* taken from a pond near Acton.

Salpingoeca Carteri, S. K. Pl. VI. Fig. 39.

Lorica flask-shaped, the neck very attenuate, exceeding in length the bulbose posterior portion. Total length 1-3000°.

HAB.—Fresh water: Bombay (H. J. C.).

The above specific name is here introduced for the reception of the form originally figured and described by Mr. H. J. Carter* under the title merely of a "Bell-shaped Infusorium." As more recently recognized by him, the affinity of this variety with the *Salpingoeca amphoridium* of James-Clark is very close, but the greater proportional length of the lorica, as shown by comparison of the figures of the two forms in question, indicates the necessity of conferring upon it a new specific title. The illustration by Mr. Carter, here reproduced, seems to indicate that the body of the lorica is joined to the object upon which it grows, through the medium of a narrowed prolongation of its substance, presenting the aspect of a peculiarly modified and expanded footstalk. The type-example of this species was found on *Converva* in the fresh-water tanks of Bombay.

Salpingoeca (?) Wallich, S. K. Pl. V. Figs. 23 and 24.

Lorica irregularly pyriform or flask-shaped, inflated posteriorly, terminating anteriorly in a narrow neck, growing upon or immersed within the shell-substance of *Globigerina* and other Foraminifera. HAB.—Salt water.

This type was originally described by Dr. Wallich† under the title of "externally opening pyriform cavities within the shell-substance of *Globigerina*". It is here introduced as a probable representative of the genus *Salpingoeca*, with some amount of diffidence, the living constructor of the pyriform loricae or cavities not having so far been observed, and the bodies in question having been hitherto regarded by their discoverer, and also by Dr. Carpenter,‡ as essential structural elements of the exogenously developed shell-substance of the organisms with which they are found associated. As such hypothetical structural elements, they are interpreted on the one hand by Dr. Carpenter as being produced through the invasion from without

GENUS SALPINGŒCA.

inwards of portions of the normal sarcodic investment of the shell, and by Wallich as the product of shell-secretion round extruded masses of sarcode. Comparison of these structures, however, as figured by Dr. Wallich and here reproduced, with the loricae of various Salpingœca, such as S. amphoridium or S. minuta, reveals so remarkable a similarity of outline and correspondence in size, that the conclusion has been arrived at by the author that the two represent similar elements. Such being the case, it would appear that these loricae are developed upon the shell-surface of the Foraminifera at an early stage of their growth, becoming, as this covering thickens, gradually surrounded and immersed within it, much in the way as certain Mollusca and Cirripedes, e.g. Magilus and Pirguna, are found embedded within the hard calcareous sclerobase of madrepores or stony corals. Should the interpretation of these minute flask-shaped parasitic bodies, as here suggested, be correct, a further careful investigation may be expected to reveal their presence attached to and standing out independently from the external surface of Globigerina in their earlier, thin-shelled, floating state.

Salpingœca petiolata, S. K. Pl. III. Fig. 26.

Lorica sessile, subcylindrical, about twice as high as broad, rounded posteriorly, the oral aperture not everted; contained zooid cylindrical, its length equal to about two-thirds of that of the lorica, to the bottom of which it is affixed by a slender thread-like pedicle. Height of lorica 1–1700".

HAB.—Salt water, solitary or scattered.

This species has been obtained by the author in some quantity at St. Heliers, Jersey, in sea-water containing Polyzoa and hydroid zoophytes obtained from the adjacent coast, which had been left standing in open jars for some months. While the lorica corresponds chiefly with that of the fresh-water S. cylindrica, the contained animalcule differs essentially in its possession of a slender pedicle. Several examples were met with in which the zooids had entered upon an encysted condition within their loricae. All traces of the collar, flagellum, and pedicle had, under these conditions, disappeared, the body being contracted into a simply ovate form within the furthest recess of its transparent domicile. It will possibly be desirable later on to establish a new generic title for those species at present retained in the genus Salpingœca in which the animalcule is affixed, as in the present instance, within its lorica through the medium of a separate thread-like pedicle.

Salpingœca ampulla, S. K. Pl. III. Figs. 17–21.

Lorica sessile, narrow and ovate beneath, expanding superiorly in an inflated, balloon-like manner, the external surface frequently exhibiting even longitudinal sulci or striations; animalcule, including the hyaline collar, entirely enclosed within the lorica, and attached to the bottom of this structure through the intermedium of a slender thread-like pedicle; the smaller posterior portion of the lorica enveloping the body, and the balloon-shaped anterior one the expanded collar of the contained animalcule. Length of lorica 1–1250", of animalcule's body 1–4000".

HAB.—Salt water.

This very beautiful variety is readily distinguished from all other representatives of the genus Salpingœca hitherto described, both on account of the remarkable shape of the lorica, and from the fact that the whole of the animalcule, including even the flagellum and hyaline collar, is completely enclosed within that structure. This last-named feature, which is shared to some extent by the stalked form Salpingœca campanula, might in fact be considered as of almost sufficient im-
ORDER CHOAANO-FLAGELLATA.

Portance to warrant the creation, on behalf of this particular type, of a new and independent generic title. The gradual formation of the very elegant lorica by the enclosed animalcule, as also the development of the latter from a detached and simple uniflagellate monadiform gemmule, has been observed and will be found represented in the several figures illustrative of this species. The primary condition of this lorica, Pl. III. Fig. 19, is a mere film-like mucilaginous exudation from the general surface of the animalcule's body, altogether devoid of that symmetry of form which subsequently characterizes it. From this immature and plastic condition it is gradually moulded by the action of the flagellum and collar into the intermediate condition represented at Fig. 21, and thence by degrees into the permanent adult shape. Immediately this last stage is attained the lorica at once hardens, and acquires such a density as to considerably outlast the life of the animalcule by which it is built up. Loricae left empty through the death of their original inhabitants, as shown at Pl. III. Fig. 18, are of frequent occurrence. The longitudinal sulci which characterize certain of the adult and vacated loricae are altogether absent in others, a circumstance which may perhaps be hereafter deemed sufficient for separating the two as distinct species; both were, however, so closely associated with one another that they are for the present regarded as mere varieties. At Fig. 19a of the plate just quoted will be found represented one of the monadiform free-swimming germs of *Salpingoeca amphulla* which has just attached itself to the half-perfected lorica of a zooid of the same species. Within two minutes after such attachment it was observed to develop a rudimentary collar and commence the formation of its protective sheath, as shown at Fig. 20. This type was originally discovered by the author growing on algae and zooxephytes taken from the tanks of the Manchester Aquarium in May 1874, and has been since found (Feb. 1877) in considerable abundance, under similar conditions, in sea-water brought from Brighton.

Salpingoeca cornuta, S. K. Pl. VI. Figs. 33–36.

Lorica vaginate or sheath-shaped, elongate, from seven to ten or twelve times as long as broad, arcuate or flexuose, tapering posteriorly and gradually widening as it approaches the anterior border, the anterior margin widest but not conspicuously everted; animalcule plastic and variable in form, elongate, subcylindrical or flask-shaped, occupying about one-fifth of the length of the lorica, often attached to it posteriorly by one or more filamentous or pseudopodic extensions of the body-sarcode. Length of lorica 1–400' to 1–300', of the contained animalcule 1–1250'.

Hab.—Salt water.

The great proportionate length of the lorica in this type, combined with the capacity possessed by the enclosed zooid of emitting posteriorly one or more pseudopodic processes, by which at will it attaches itself to the lateral walls of the lorica, distinguish it in a marked manner from all of the previously described representatives of the present genus. Pl. VI. Figs. 33 and 36 serve to illustrate the more important modifications of this abnormal method of attachment. In the latter of these, Fig. 36, the single attenuate pseudopodal prolongation is so thread-like and elastic as to present the aspect and possess all the attributes of a veritable retractile pedicle, permitting the animalcule to extend itself to the orifice or to withdraw suddenly within the cavity of its transparent domicile, after the manner of *Bicososa* or *Dinobryon*. In the former example, Fig. 33, examined on the same occasion, the animalcule was found to retain or alter its position in its lorica through the medium of no less than three of these sarcode extensions, each of which, however, had a more irregular pseudopodium-like appearance than in the last variety. In numerous instances, again, zooids were seen in which no trace whatever of adherent processes could be detected.
The shape of the lorica, apart from the salt-water habitat, of this type, at once suffices to distinguish it from Salpingoea gracilis, which it in some respects slightly resembles. The investing sheath has never as yet been found perfectly straight as in that species, but always has one or more graceful curvatures; this, combined with its evenly increasing diameter, communicates to this structure a contour closely resembling the graceful curving horns of certain antelopes, and has suggested the specific title given.

Upon one occasion, Fig. 33, a lorica was found having a bifurcation at its distal extremity, each of the separate tubular terminations being occupied by a single zooid. Whether this example was the product through fission of a single primary individual, or was derived through the attachment of an independent gemmule to a half-formed lorica, could not at the time be satisfactorily ascertained; the former alternative would, however, appear most probable. The animalcules of Salpingoea cornuta, while frequently presenting the subcylindrical shape most characteristic of S. gracilis, is subject, through the great plasticity of its substance, to a very extensive range of variation. Not unfrequently it assumes that soda-water-bottle or clavate shape, with an attenuate anterior extremity, characteristic of various other members of the same generic group, while on other occasions again (Fig. 35) it has been observed with these proportions exactly reversed, the posterior end being the narrower one of the two, and the characteristic collar and flagellum being developed from the larger one. Examples of this species were first obtained growing on Polyzoa and hydroid zoophytes gathered at Bognor, Sussex, in September 1875, as also more recently (October 1875) from the tanks of the Manchester Aquarium.

Salpingoea tuba, S. K. Pl. VI. Fig. 38.

Lorica sessile, subcylindrical, rounded posteriorly, slightly constricted anteriorly, the frontal margin somewhat everted; enclosed animalcules mostly flask-shaped, with a rounded and inflated posterior and narrower neck-like anterior region, occupying one-half or the greater portion of the cavity of the lorica; sometimes subcylindrical and attached by their posterior extremities to the bottom of this structure; collar largely developed, equaling the body in height. Length of bodies 1–4000" to 1–2000".

HAB.—Salt water, social.

This species was obtained by the author in September 1879, attached in social clusters to zoophytes and marine Conferva collected at St. Heliers, Jersey. But for its smaller size and salt-water habitat it might have been identified with the sessile variety of Salpingoea gracilis represented at Pl. VI. Fig. 32. Additional points may, however, be cited that seem to indicate its distinctness from that form. The contained animalcules always occupy at least one-half of the cavity of their respective loricas, and not uncommonly its entire length, being under such conditions attached by their posterior extremities to the bottom of their domiciles, as indicated in the example to the extreme left in the group shown at Fig. 38. When freely suspended within their loricas they almost invariably assume an attenuate flask-shaped contour, corresponding closely with that frequently exhibited by Salpingoea cornuta, but never presented by S. gracilis.

Salpingoea gracilis, J.-Clk. Pl. VI. Figs. 25–32.

Lorica elongate, vaginate or subcylindrical, straight, five or six times as long as broad, sometimes rounded, in other instances more or less attenuate or even pedunculate posteriorly, the anterior margin slightly everted, somewhat constricted beneath this region; contained animalcule subcylindrical elongate, occupying from one-fourth to one-third of the total
length of the lorica; contractile vesicles two in number, posteriorly situated. Length of lorica 1–800" to 1–500", of body of contained animalcule 1–2000" to 1–1000".

HAB.—Fresh water, occurring singly or in small groups of three or four individuals.

The figures illustrating this species, contributed by Prof. H. James-Clark to the Memoirs of the Boston Society of Natural History for the year 1868, convey but an inadequate idea of the very considerable variation in contour that may be assumed by the protective lorica, he in all instances delineating and describing that form in which the posterior extremity is so attenuate as to constitute a veritable pedicle, as shown at Pl. VI. Figs. 26 and 27. Although frequently met with in the condition that has been alone encountered by the American authority, the examination of many hundred examples by the present author has elicited the fact that in at least British waters this very attenuated form is more exceptional, the majority tapering but moderately as in the example represented at Fig. 28 of Pl. VI. or being evenly rounded in this region as at Fig. 32. This species, in common with *S. amphoridium*, appears to be almost universally distributed, examples having been found attached mostly to confervoid algae, obtained from numerous widely separated stations, sometimes occurring as solitary samples, and in other instances in little closely approximated clusters of three or four individuals, as in the figure last referred to. These social groups are the product by repeated transverse fission or gemmation of a single primary zooid in the manner indicated in Figs. 28 and 29, and as more fully described in connection with the marine type *Salpingoea inquillata*. The motile zooid or germ derived from this fissive process presents, in the first instance, a simple monadiform aspect, as shown at Fig. 30, and fastening itself close to the base of the parent lorica, speedily acquires all the essential characters of the adult organism. Encysted examples exhibiting a more or less advanced stage of segmentation, as shown at Fig. 31, are of frequent occurrence. Stein, in his recently published volume, connects with the present title examples only having a distinct peduncular posterior prolongation; the intermediate variety, as reproduced from his work at Fig. 24, being distinguished by the title of *Salpingoea vaginicoLa*.

B.—Pedicle Persistent, Conspicuously Developed.

Salpingoea marina, J.-Clk. Pl. III. Figs. 13–15, and Pl. V. Fig. 34.

Lorica ovate, inflated and widest posteriorly, tapering evenly towards the aperture at the opposite or anterior extremity, mounted on a straight or irregularly curved pedicle, which equals or slightly exceeds the lorica in height; animalcule adapting itself to the shape of the lorica, and almost filling it. Length of lorica 1–4000" to 1–3250".

HAB.—Salt water, attached to the hydrothecae of Sertulian zoophytes, solitary.

In *Salpingoea amphoridium* and *S. gracilis* the occasional or more abnormal occurrence of a very short or more or less conspicuously developed pedicle, has been already alluded to; with *S. marina*, however, we arrive at a group of forms in which a pedicle is constantly present, and usually of considerable length. But for this feature being inconstant in the two above-named species, it might have been desirable to create a new generic title, for either the pedicellate or non-pedicellate series, equivalent in value to *Cothurnia* and *Vaginicola* among the higher Ciliate types. These exceptional instances, however, serve well to illustrate the unreliability of such characters for the purposes of classification. The specimens of *Salpingoea marina* as first described and figured by Prof. H. James-Clark, agree in all respects with those obtained by the author in British waters, with the
exception that in the former instance the pedicle possesses a more or less curved outline, while in those personally observed, this structure has been invariably perfectly straight; the shape and size of the lorica and all other details of importance accord, however, so harmoniously, that the two forms can scarcely be regarded otherwise than as local varieties of one and the same specific type. The lorica itself very closely approaches in shape that of the fresh-water and non-pedicellate species Salpingöca minutæ, being like that, conical, or as Professor Clark suggests, resembling a Florence-flask with the neck cut short. The examples of this species examined were found in some profusion, in the first instance, attached to various Sertularian zoophytes gathered near low-water mark at Bognor, Sussex, and more recently under similar circumstances at St. Heliers, Jersey. An animalculcule is represented at Pl. V. Fig. 34, in which the collar and flagellum being retracted, pseudopod processes are extended from the anterior region in a manner closely resembling what has already been recorded of S. amphoridium. An early developmental phase previous to the production of the lorica, and in which the zooid is not to be distinguished from an ordinary stalked example of the genus Monosiga, is represented at Pl. III. Fig. 13.

Salpingöca longipes, S. K. Pl. VI. Fig. 7.

Lorca ovate, truncate at the anterior border, slightly tapering posteriorly, mounted on a long, straight, slender pedicle, which equals four or five times its length; contained animalcule shortly ovate, occupying the anterior two-thirds of the cavity of the lorica. Length of lorica 1–2500". Hab.—Salt water, solitary or in scattered groups.

The great length of the pedicle compared with the lorica, and the very simple contour of this latter structure, render this species easy of recognition. The contained animalcule, adapting itself to the shape of the lorica, is almost globular, and devoid of that narrow anterior prolongation pertaining to the more ordinary representatives of the genus, and which conveys to them a bottle-like contour. Examples furnishing the material for this description were discovered by the author, in November 1873, attached to Confervæ and Polyzoa growing in the Brighton Aquarium.

Salpingöca urceolata, S. K. Pl. V. Figs. 14–16.

Lorca urceolate, conical, gradually tapering towards its junction with the pedicle, inflated in a shoulder-like manner anteriorly, and then suddenly constricted and forming a short and somewhat contractile neck; contained zooid flask-shaped, inflated posteriorly, with a narrow neck-like anterior portion; pedicle straight and rigid, equal to or slightly exceeding the lorica in height. Length of lorica 1–2000". Hab.—Salt water, solitary.

This species was obtained by the author in company with S. marina, but in less abundance, at Bognor, Sussex, in September 1872; the elegant pitcher-like shape of the lorica at once distinguishes it from the preceding or any other stalked representative of the genus that has been discovered, with the exception, perhaps, of S. ringens. From this latter form, however, it differs in the greater narrowness of the neck-like region, which is further remarkable for its elasticity, expanding and contracting considerably in accordance with the movements of the animalcule. In the deserted lorica, which were frequently observed, the contraction, as shown at Pl. V. Fig. 16, attains its utmost limit.

Salpingöca teres, S. K.

Lorca attenuate, conical or subfusiform, widest anteriorly, about four times as long as broad; pedicle straight, slightly exceeding the lorica in
length; enclosed animalcule elongate-ovate, occupying one-half of the cavity of lorica. Length of lorica 1-250°. HAB.—Salt water, solitary.

A single example only of this species has as yet been met with, being then obtained in company with *S. inquillata* and *S. curvipes* on zoophytes originally brought from Brighton. Excepting for its smaller size, the lorica in its form and proportions corresponds so closely with that of the long-stalked variety of the fresh-water *Salpingaea gracilis*, as delineated at Pl. VI. Fig. 27, that its separate illustration has been omitted.

Salpingaea tintinnabulum, S. K. Pl. V. Figs. 21 AND 22.

Lorica bell- or cup-shaped, somewhat variable in its proportions, widest and everted at its anterior margin, the width usually nearly equal to the total length; pedicle varying from a less length to twice the length of the lorica; contained animalcule pyriform, tapering posteriorly, attached to the bottom of its lorica by an attenuate prolongation of the body-substance. Length of the lorica 1-3250°.

HAB.—Salt water, solitary.

This animalcule was obtained somewhat abundantly from sea-water derived from the Brighton Aquarium, containing sponges and Ascidians in a semi-decayed state. The variable length of the rigid pedicle forms a conspicuous feature of this species. At Pl. V. Fig. 22 the encysted condition of an example of the short-stalked variety is represented.

Salpingaea ringens, S. K. Pl. V. Figs. 17 AND 18.

Lorica tapering posteriorly, one and a half times as long as broad, ovate for the two-thirds forming its central and posterior portions, the anterior third expanding outwards abruptly, the greatest width being at the front margin. Pedicle straight, equal in length to the lorica; enclosed animalcule flask-shaped, attenuate anteriorly. Length of lorica 1-2000°. HAB.—Salt water, solitary.

The lorica of this species presents a certain resemblance to that of both *S. inquillata* and *S. urceolata*. From the latter of these it may, however, be at once distinguished by the greater breadth and abrupt widening out of its anterior border, and by the non-contractility of the walls of this region; a similar widening out of the anterior region, together with the shorter and broader proportions of the lorica, generally distinguishing it in a like manner from *S. inquillata*; added to this, the enclosed animalcule in the present instance is altogether distinct in shape, being in its normal condition flask-shaped or pyriform, instead of simply ovate. A perfectly quiescent or encysted condition of the animalcule, probably pending the propagation of the species by multiple fission, after the manner already described of *Salpingaea fusiformis*, was observed, and is represented at Pl. V. Fig. 18. This variety was found attached to sea-weed imported to the fish-house of the Zoological Gardens from Weymouth in April 1877.

Salpingaea inquillata, S. K. Pl. VI. Figs. 1-6.

Lorica elongate-ovate, tapering posteriorly, widest in the centre, slightly everted at the anterior margin, about twice as long as broad; contained animalcule simply ovate, occupying about one-half of the cavity of the
lorica; pedicle straight and rigid, equalling or exceeding the length of the lorica. Length of lorica 1–2500°.

HAB.—Salt water, solitary or scattered.

This little animalcule was obtained abundantly in February 1877 in sea-water from Brighton in company with S. curvipes, with which the shape of its lorica somewhat corresponds. It is at once to be distinguished from that form, however, by the much greater length of the pedicle and by the entire absence of the curvature of either this element or the posterior extremity of the lorica. The shape of the anterior extremity of the protective sheath is subject to individual variation, being often so narrowed as to communicate to the whole a sub fusiform contour. The phenomena of multiplication by transverse fission, as observed by the author, possess much interest. The most prominent successive phases of this process are illustrated at Pl. VI. Figs. 2–5. In the first condition observed, as represented by Fig. 5, the body of the animalcule had become divided by a median constriction into two equal subspherical portions, the upper one still retaining the characteristic hyaline collar and flagellum, tilted, however, to one side, while from the anterior surface of the posterior segment there was projected a slender pseudopodic extension of the sarcode. In the next stage, Fig. 2, the filamentous flagellum of the anterior half was the only appendage visible, the collar having become entirely absorbed. This flagellum was shortly after withdrawn in a similar manner, the succeeding metamorphosis exhibited being delineated at Fig. 4. Here the anterior and posterior halves had separated considerably from one another, but at the same time remained connected by a thin cylindrical film of sarcode, which constituted for the time being a representation of the hyaline collar, but common to both of the imperfectly segmented moieties. Ultimately the lower or posterior half assumed the entire possession of the newly developed hyaline collar, while the anterior one, detaching itself completely, drifted away as a simple plastic sphere of sarcode. The last stage, prior to the ultimate separation of the two halves, is shown at Fig. 3. A recently attached collarless zooid, derived by the process of segmentation as just described, and in the act of constructing, by exudation, its characteristic lorica, is seen at Pl. VI. Fig. 6.

Salpingœca curvipes, S. K. Pl. V. Fig. 19.

Lorica somewhat attenuate, nearly three times as long as broad, widest in the centre and at the expanded anterior margin, slightly constricted between these two areas, the tapering posterior extremity slightly curved; pedicle short, not more than half the length of the lorica, joining in the line of curvature characteristic of the posterior extremity of that structure; contained animalcule ovate, occupying one-half of the cavity of the lorica. Length of lorica 1–2500°.

HAB.—Salt water, solitary.

The protective sheath of this very elegant little species is easily recognized by its elongate outline and the graceful curve shared by both the short pedicle and its own posterior extremity. It has been found sparingly in company with many other representatives of the same order attached to the hydrothœcae of Sertularian and other zoophytes procured from Brighton.

Lorica napiform or turbinate, depressed, widest centrally, pointed posteriorly and further produced as a short, rigid pedicle, the anterior region constricted, forming a narrow and slightly everted neck; contained animal-
cule flask-shaped, flattened, occupying the greater portion of the cavity of the lorica. Height of lorica, without the pedicle, 1–3250", diameter across the centre equal to or exceeding this dimension.

HAB.—Salt water, gregarious.

This species was obtained by the author at St. Heliers, Jersey, in June 1877, clustered in profusion upon various filamentous marine algae under conditions closely parallel with those already related of the more cosmopolitan fresh-water type, Salpingoea amphoridium. The depressed naiiform contour of the lorica of this species isolates it completely from any of the preceding forms.

Salpingoea infusionum, S. K. Pl. VI. Figs. 8–16.

Lorica simply ovate, not everted anteriorly, about one and a half times as long as broad, mounted on a short, straight pedicle, varying from a similar length to twice the length of the lorica; contained animalcule evenly ovate, occupying from one-half to two-thirds of the cavity of the lorica. Length of lorica, without pedicle, 1–3000" to 1–2500".

HAB.—Salt water, more especially abundant in vegetable infusions compounded with that medium; solitary or scattered.

This species has been obtained by the author in remarkable profusion in connection with those experimental infusions of hay in salt water, productive of Monas (Heteronita) lens, Dinomonas vorax, Dinomonas tuberculata, and Stereomonas formicina, described elsewhere in this volume. Its earliest appearance, and then in a larval and immature form, was first noticed on the fourth day succeeding the setting aside of the hay to macerate, while after that date it constituted for some weeks one of the most characteristic and abundant Flagellate types. Through the artificial cultivation of this animalcule in the manner indicated, an intimate acquaintance has been made with the more important and highly interesting phases of its life-history. The earliest stage in this life-cycle, in common with that of the majority, or in all probability of all its congeners, is a simple, spherical, spore-like body measuring, in this case, the 1–10,000th of an inch in diameter; from this spore there is developed a minute spherical monadiform body bearing a single lash-like flagellum at its apical pole. This monadiform germ speedily assumes a symmetrically ovate shape, and as it pursues its nomadic course through the water might be readily regarded as a typical representative of the genus Monas. Delineations of such earlier migratory developmental phases of this species are given at Pl. VI. Figs. 10 and 16, the germ in the former instance, while precisely similar in character, being derived from the process of transverse fission. A little later this vagrant monad, finding a site suited to the requirements of its adult sedentary existence, anchors itself by its posterior extremity, and speedily develops from this region a delicate hair-like pedicle, as shown at Fig. 11. There is as yet no appearance of the characteristic collar, the stalked monad with its single terminal flagellum presenting at this epoch of its ontogeny a striking likeness to the sedentary states of the representatives of the genus Oikomonas. While under examination the missing collar gradually makes its appearance as a film-like extension of the anterior substance of the sarcote, while the pedicle, at first short, gradually lengthens and acquires a rigid consistence. The animalcule, however, see Figs. 12 and 13, by no means possesses as yet a sound claim for admission into the present generic group. The external protective sheath or lorica remains to be developed, and pending the production of that structure, the immature monad corresponds to all appearances with the members of the illoricate collar-bearing genus Monasiga. A few brief minutes suffice now, however, for the development of this last-named essential element, and with it the assumption by the animalcule of its complete specific features as described in the introductory diagnosis, and depicted at Fig. 8.
The successive phases of the life-history of this species as here enumerated, and fully illustrated in the accompanying plate, show that, inclusive of the mature condition, the animalcule exhibits consecutively the characteristics of no less than four well-defined generic types of the Infusoria-Flagellata, commencing with the most simple type of all, as furnished by the genus Monas, and passing thence through those of Oikomonas and Monosiga to its characteristic adult one of Salpingoea. The completion of the entire life-cycle by the encystment of the adult animalcule, followed by its resolution into numerous spore-like bodies, Fig. 15, similar to that from which it originally sprang, was ultimately observed. The contour of the lorica of Salpingoea infusionum corresponds most nearly with that of S. longipes, its proportionately shorter pedicle, however, readily distinguishing it from that type.

Salpingoea campanula, S. K. Pl. IV. Fig. 11.

Lorica goblet- or bell-shaped, scarcely longer than broad, the basal region narrower, conically pointed, the anterior two-thirds expanding abruptly and in a marked manner in comparison with the first-named area, the anterior border widest, but not everted; pedicle equalling the length of the lorica; contained zooid symmetrically ovate, occupying and projecting slightly beyond the conical basal area; the fully expanded collar enclosed entirely within the wider anterior area of the cavity of the lorica, the flagellum extending for about half its length beyond its anterior border; contractile vesicles two in number, posteriorly located; endoplast spherical, subcentral. Length of lorica 1-800'. HAB.—Salt water, solitary.

The single example of this specific type so far observed was discovered by the author attached to the carapace of an amphipodous crustacean allied to Gammarus, at St. Heliers, Jersey, in February 1878. The form of the lorica coincides considerably with that of the Codonoea costata of Professor Clark, and also, omitting the pedicle, to a certain extent with that of Salpingoea ampulla, previously described, as manifested by the complete enclosure of both the body of the zooid and its characteristic collar within the cavity of the lorica, and by the adaptation of this last-named element to the contours of these joint structures.

Salpingoea convallaria, Stein. Pl. IV. Figs. 13-16.

Lorica vase-shaped or campanulate, pointed posteriorly, inflated and widest a little behind the median line, slightly constricted anteriorly, scarcely one and a half times as long as broad; pedicle very slender, usually about one-third of the height of the lorica; animalcule filling the greater portion of the cavity of the lorica, the collar equalling the body in height, protruding almost entirely from the orifice of the lorica; contractile vesicles multiple, posteriorly situated; endoplast anterior, subcentral. Length of lorica 1-1600' to 1-1000'.

HAB.—Fresh water, attached to the branching pedicle of Epistylis digitalis.

The walls of the lorica in this species are described by Stein in his index to the figures given,* as being remarkably soft and plastic. Excepting for the thick pedicle and more constricted anterior border, it would appear to closely resemble the minute

* 'Infusionsthiere,' Abth. iii., 1878.
imperfectly observed Flagellate organisms recorded by Greeff as adhering in numbers to the pedicle of Epistylis flavicans; and reproduced from his drawings at Pl. III. Figs. 22–24. According to Stein, this type multiplies within its lorica by longitudinal instead of transverse fission, a phenomenon distinctly observed as yet of no other representative of the genus.

Salpingoeca oblonga, Stein. Pl. VI. Figs. 20–23.

Lorica pedicellate, elongate-ovate or subfusiform, widest a little behind the median line, tapering gradually towards each extremity, nearly two and a half times as long as broad; pedicle varying in length from one half to nearly twice the length of the lorica; animalcule usually occupying the two anterior thirds of the cavity of the lorica, leaving the posterior one vacant; collar equalling the body in height; contractile vesicles multiple, posteriorly situated; endoplast anteriorly located. Length of lorica 1–1200" to 1–950". HAB.—Fresh water.

In some of the examples figured by Stein,* including the delineation reproduced at Pl. VI. Fig. 23, the animalcules have apparently entered into a spheroidal encysted state within the cavity of their lorica, the orifice of the same being closed by a lid-like secretion. In another instance (see Fig. 22) two zooids are drawn, which are explained by Stein in the index as illustrating an abnormal instance of longitudinal fission, but which would seem quite as probably to represent the process of fusion or genetic union between a larger sedentary and a smaller illoricate motile zooid, or even an advanced phase of transverse fission closely resembling that of Salpingoeca inquillata shown at Pl. VI. Fig. 5.

Salpingoeca Clarkii, Stein. Pl. VI. Figs. 17–19.

Lorica elongate flask-shaped, from two to three times as long as broad, slightly inflated and rounded posteriorly, tapering gradually towards the anterior extremity, terminating in an attenuate, scarcely everted neck; pedicle straight, moderately stout, usually equalling the lorica in length; animalcule nearly or entirely filling the cavity of the lorica; contractile vesicles multiple, posteriorly situated; endoplast sub-central. Length of lorica 1–1200".

HAB.—Fresh water, attached gregariously to the carapace of the rotifer Philodina kirsuta Ehr.

In conferring the above title upon this form, Stein † appears to have overlooked the fact that the same name had been previously proposed by Bütschli for a distinct species of the same genus. As, however, Bütschli’s type has been shown to correspond with the Salpingoeca fusiformis still earlier described by the author, Stein’s title, to avoid a further change of name, is in the present instance, though somewhat irregularly, retained. In the chief figure of this species given by Stein no less than forty individuals are represented crowded upon the projecting snout of the above-named rotifer. One example among the isolated individuals he delineates has withdrawn its collar and protruded its sarcode beyond the orifice of the lorica in a bubble-like manner, while in another instance a thread-like pedicle connects the body of the animalcule with the bottom of its protective sheath. Both of these more abnormal cases are reproduced at Pl. VI. Figs. 18 and 19.

* ‘Infusionsthiere,’ Abth. iii., 1878.
† Ibid.
Salpingœca Boltoni, S. K.

Lorica pedunculate, elongate-conical, the anterior border widest, slightly everted, tapering and acuminate pointed posteriorly, from two to two and a half times as long as broad; pedicle straight and slender, equalling or exceeding twice the length of the lorica; enclosed animalcule symmetrically ovate or subcylindrical, occupying one-half of the cavity of the lorica, sometimes affixed to it by a thread-like prolongation of the posterior region of the body. **Length of lorica 1–1250", of contained zooid 1–2500".**

HAB.—Fresh water, solitary.

This species represents the first-fruits of the more extended acquaintanceship with this interesting order of the Flagellata acquired through the publication of the plates illustrative of all the previously known forms, in the first part of this Manual, in October 1880. Its discovery is due to Mr. Thomas Bolton, who having detected it attached to *Myriophyllum* from his aquaria, failed to identify it precisely with any of the species figured in Plates II. to X. of this treatise, and remitted examples to the author. So far as the external contour of the lorica, and the proportionate length of the supporting pedicle are concerned, it most nearly resembles the marine *Salpingœca inquillata*, represented at Pl. VI. Figs. 1–6. Apart from its fresh-water habitat, it may be distinguished from that type, however, by its considerably larger size and the greater proportionate length of the pedicle, which is surpassed by that alone of *S. longipes*.

A few weeks previous to Mr. Bolton's independent discovery of this species (September 1880) the author met with examples undoubtedly referable to the same type on vegetable debris derived from the *Victoria regia* tank in Kew Gardens, and it has since propagated abundantly in a window aquarium containing *Aponogeton*, *Myriophyllum*, *Ceratophyllum*, and other aquatic plants in a vigorous state of growth. On one occasion an example was observed in which the animalcule was attached to the side of its lorica by a contractile thread-like prolongation of the sacrode of its posterior region, in a manner resembling that already described of *Salpingœca cornu- tum*. A rough delineation of this species is contained, at letter c, in the pen-and-ink sketch executed by the author for Mr. Bolton, included in his advertisement to subscribers bound up with Part II. of the Manual, published in November 1880, this sketch being further reproduced as a lithographic plate in Part I. of the 'Northern Microscopist,' announced for January 1881. No finer illustration of the abundant distribution of the Flagellate Infusoria can perhaps be cited than the drawing just referred to, in which no less than three varieties of collared monads and two sedentary Pantostomatous species are, as observed by the author, grouped upon a small portion of a leaflet of *Myriophyllum spicatum*.

Genus II. LAGENŒCA, S. K.

(Greek, *lagenos*, flask; *oikeo*, to inhabit.)

Solitary, collar-bearing, flagellate animalcules, resembling those of *Salpingœca*, but secreting and inhabiting a freely detached protective sheath or lorica.

The members of this genus, of which but a single species has as yet been discovered, may be said to occupy that position with reference to the more ordinary stationary Choanophorous Flagellata that is held by the higher Ciliata *Dictyocysta* or *Tinatinum* with relation to the sedentary representatives of the primary groups to which they respectively belong.
Lagenchaea cuspidata, S. K. Pl. III. Fig. 25.

Lorica amber-coloured, flask-shaped, compressed, widest posteriorly and there ornamented with one long axial and four shorter, subequal and evenly disposed, peripheral, mucronate spines; contained animalcule flask-shaped, inflated posteriorly, produced anteriorly in a neck-like manner, protruding some little distance beyond the orifice of the lorica, filling posteriorly the greater portion of the cavity of this structure. Length of lorica 1–4000". HAB.—Pond water.

The single example of this species hitherto encountered was discovered by the author in December 1871 in pond water containing Codosiga botrytis, Salpingoea amphoridium, and Bicoscea lacustris. The contained zooid, apart from its lorica, was indistinguishable both in form and size from that of Salpingoea amphoridium, the anterior, and in this case protruding, collar-bearing region being in the same way narrowly prolonged in a neck-like form, although there was in this instance no corresponding conformity in the shape of the lorica. This assumption of a clavate or flask-shaped outline in the zooid independent of a similar one in the contour of the lorica, appears to be of common occurrence among the members of the Salpingoecidae. The lorica itself was of a pale amber colour and ornamented at its base with five sharply pointed projecting spines, conveying to the observer an aspect remarkably suggestive of one of the many varieties of flask-shaped shells distinctive of the genus Lagena among the Foraminifera. Although so scantily represented in the present treatise, it is highly probable that a more extended investigation will demonstrate a greatly varied and extensive distribution of free-swimming loricate types referable to this generic group.

Genus III. Polyœca, S. K.

(Greek, polys, many; oikeo, to ina bit.)

Collar-bearing, flagellate, loricate animalcules, similar to those of Salpingoea, but forming by the serial conjunction of their respective loricae a more or less extensive branching colony-stock or polythecium.

This genus bears the same relation to Salpingoea that Codosiga does to Monosiga, being the compound expression through the continued fission without complete separation of the preceding simpler types. Only one species, an inhabitant of salt water, has been so far discovered.

Polyœca dichotoma, S. K. Pl. III. Figs. 27, 28, and Pl. V. Fig. 20.

Loricae of polythecium urceolate, pedicellate, tapering posteriorly, slightly constricted at a distance of one-third of the total length from the anterior margin, and then widening out to their greatest diameter; pedicles of each separate lorica straight, slender, varying from the same to two or three times the length of the latter structure; contained animalcules ovate, occupying respectively about one-half of the cavities of the loricae; contour of polythecium subdichotomous, each zooid usually giving rise by transverse fission to two new ones which attach themselves to opposite sides of the parent lorica. Length of separate lorica 1–2500". HAB.—Salt water.

The compound polythecium of this very elegant and as yet single known representative of the genus Polyœca may be most aptly compared to a number of zooids of
GENUS PHALANSTERIUM.

Salpingeoa inquillata, whose loricae are united to one another in systematic order through the medium of their respective pedicles. As shown in the accompanying figures, the more general dichotomous mode of gemmation in this species admits of some slight modifications. Thus at Pl. III. Fig. 28, the colony, after starting on the typical plan, is continued on each side in a uniserial order, while at Fig. 20 of Plate V., representing the largest colony of this species as yet met with, the right-hand resultant of the primary zooid gives origin to no less than two individuals at each anterior angle. Each of these, however, as is evident from the simple structure of the pedicle in its proximal region, commenced as single animalcules, these, at a short distance from the parent, dividing a second time by longitudinal fission.

This highly interesting form was found attached to the hydroid zoophytes and Polyzoa obtained in May 1874 from the Crystal Palace Aquarium. As with various other types described in this manual derived from the tanks of large public aquaria, it is impossible to predicate from what portion of the coast-line it was originally imported. The correspondence of the polythecium of this species, with reference both to its general mode of growth and to the contour of the individual loricae, with that of the biflagellate fresh-water type *Stylobryen (Poteriodendron) petiolatum* is worthy of remark.

Fam. III. PHALANSTERIIDÆ, S. K.

Animalcules solitary or social, more or less ovate, bearing a single terminal flagellum, the base of which is encircled by a rudimentary and permanently contracted, or by a well-developed and widely extensible membranous collar; excreting and inhabiting a simple or complex mucilaginous protective sheath or zoocytium.

Compared with the preceding Choano-Flagellata, the members of this family group may be said to maintain a relationship corresponding with that which subsists between the Peritrichous genus *Ophrydium*, and such typical Vorticellidæ as *Vorticella, Epistyliis, and Vagnicola*. At the same time, the new investing element or zoocytium now introduced is undoubtedly both morphologically and physiologically identical with the common mucilaginous matrix or cytoblastema which enters so largely into the composition of all sponge structures, and which is similarly excreted and inhabited by colony-stocks of corresponding collared flagellate monads. By this family group of the *Phalanstriidea* the two sections of the Discostomata-Gymnozoidea or naked collared monads, and the Discostomata-Sarcocrypta or slime-immersed collared monads as represented by the Spongida, are beyond question effectually bridged.

GENUS I. PHALANSTERIUM, Cienkowski.

Animalcules normally symmetrically ovate but more or less plastic and variable in form, bearing a single terminal flagellum, whose base is enclosed by a conical, non-extensible, hyaline collar; endoplast and one or more contractile vesicles usually conspicuous; producing extensive colonies through multiplication within a variously modified common gelatinous matrix or zoocytium; the flagella only projecting beyond the zoocytium into the outer water.

As originally founded by Cienkowski,* the genus *Phalansterium* was made to include two entirely distinct flagellate forms, one of which, *P. intestinum*, possessing two flagelliform appendages, has been selected by Stein as the type of the previously

* 'Archiv für Mikroskopische Anatomie,' Bd. vi., 1870.
ORDER CHOANO-FLAGELLATA.

described genus *Spongomonas*. The single species left out of these two, to which another is now added by Stein, was recognized by Cienkowski as exhibiting a peculiar beak-like modification of the anterior region, into which the base of the single flagellum is inserted. Professor James-Clark was the first to indicate the probable homology of this beak-like prominence with the collar-like organ discovered by him in connection with the two generic forms *Codosiga* and *Salpingeca*, his inference being entirely substantiated by Stein's later illustrations. As shown in the figures reproduced from this authority, the collar-like organ or its homologue in the present genus, so far as observed, never exhibits that expanded funnel-shaped contour which is seen in all the Choano-Flagellata previously described, but exhibits rather that conical form with a wider basal or proximal, and narrower contracted distal region, that characterizes them in their retracted state. Whether or not a circulating current or cyclosis of the sarcode substance of this reduced and rudimentary form of collar developed in *Phalansterium*, is maintained, remains to be demonstrated.

As first pointed out by Professor H. James-Clark, the habit exhibited by the members of this genus of exuding and socially inhabiting a common gelatinous matrix or zoocytium, approximates them more nearly than any previously known members of the independent collared Flagellata to the important group of the Spongida. An advance in this direction is nevertheless accomplished in the recently discovered Flagellate type upon which the new generic title of *Protospongia* is here conferred.

Phalansterium consociatum, Fres. sp. Pl. XII. Figs. 5–9.

Common gelatinous matrix or zoocytium depressed, discoidal or shield-shaped, more or less granular, divided by radiating dissepiments into separate subtriangular or tubular areas representing the chambers within the zoocytium primarily constructed by the individual zooids; contained zooids elongate-ovate or pyriform, from one and a half to twice as long as broad; collar conical, having the appearance of an anteriorly developed beak-like process, about one-third the length of the body; contractile vesicles two in number, posteriorly located; endoplasm spherical, subcentral. Length of zooids 1–2500', diameter of discoidal zoocytium 1–420'.

Hab.—Fresh water.

This species was originally described by Fresenius* under the title of *Monas consociatum*, its reflation to the present generic group being accomplished, as already remarked, by Cienkowski. The zooids in their encysted condition, as reported by this authority, exhibit, as shown at Pl. XII. Fig. 8, a somewhat peculiar contour, being subspheroidal with three longitudinal keel-like ridges, one of which is produced in a mucronate manner at the two apices. According also to this observer, fission in this type takes place longitudinally, or in a direction contrary to that which, as indicated by Stein, obtains in the species next described.

Animalcules plastic and variable in form, ovate or elliptical, one and a half to three times as long as broad, building up an erect, lobate, palmate, or digitiform, subdichotomously branching, coarsely, granular zoocytium; terminations of the branches hollow, inflated, and subcylindrical, with large circular distal apertures, containing each a single or, after fission, two

* *Beiträge zur Kenntniss Mikroskopischer Organismen,* Frankfort, 1858.
GENUS PROTOSPONGIA.

363

separate animalcules; flagellum attenuate, two or three times the length of the body, conical collar embracing its base for about a distance of one-eighth of its total length; contractile vesicles two in number, posteriorly situated, endoplast spherical, subcentral. Length of zooids 1-1500", altitude of branching zoocytium 1-60". HAB.—Fresh water.

Only in the most luxuriant and fully grown examples does the zoocytium of this species present the profusely branched contour delineated at Fig. 1 of the accompanying plate, and which, in this instance, may be appropriately compared with the gelatinous polvzoarium of the marine polvzoon Aleyonidium gelatinosum. As a contrast to this, it frequently exhibits a but slightly elevated lobulate aspect closely approaching that of Spongomonas uvella, every phase of gradation occurring between these two extremes. Multiplication in the present type is, according to Stein, effected by transverse fission. Neither this nor the preceding form appear so far to have been discovered in British waters.

GENUS II. PROTOSPONGIA, S.K.

(Greek, protos, first; spoggos, sponge.)

Animalcules normally ovate or pyriform, but more or less plastic and variable in contour, bearing a single terminal flagellum whose base is embraced by a well-developed, extensile and contractile, funnel-shaped collar; forming extensive colony-stocks, excreting and inhabiting a common mucilaginous matrix or zoocytium, within the substance of which the bodies remain constantly immersed, the collars and flagella only being projected into the surrounding water; endoplast and one or more contractile vesicles usually conspicuous; increasing by binary fission and by the subdivision of their entire body-mass into sporular elements.

This new generic group is established for the reception of a single recently discovered Flagellate type which corresponds with Phalansterium in so far as that the animalcules excrete, and live more or less completely immersed within, a common mucilaginous matrix or zoocytium. An important distinctive feature is, however, to be noted in the fact that the collar, in place of being rudimentary and having a permanently conical and contracted aspect, attains to its full development, being capable of contraction and expansion, exhibiting circulatory currents, and in all ways corresponding with the normal condition of this structure as existing in the preceding families of the Codonosigidae and Salpingaceidae, and throughout the entire section of the Spongida.

The importance of the position occupied by the typical representative of this genus with relation to the last-named group, that of the sponges, can scarcely be over-estimated, and is fully explained in its succeeding specific description. With reference to the relationship indicated, this interesting type is herewith dedicated to, and specially commended to the notice of, the illustrious evolutionist of Jena.

Protospongia Haeckeli, S. K. Pl. X. Figs. 20-30.

Zooids more or less ovate or pyriform, but exceedingly plastic and variable in shape, from one and a half times to twice as long as broad, sometimes pointed and more attenuate posteriorly, these proportions in other instances being precisely reversed, often assuming an altogether irregular amœbiform contour, the flagella and collars under such conditions being entirely retracted; collar when fully extended equalling or even
exceeding the length of the body; contractile vesicles two in number, posteriorly located; endoplasms spherical, subcentral; common mucilaginous matrix or zoocytium exceedingly transparent, forming a more or less extensive film-like expansion on the surface of the water or over submerged objects, containing from six to eight to as many as fifty or sixty or more zooids. Length of zooids 1–3000". HAB.—Fresh water.

This very interesting form was obtained by the author so recently as July 1880, in water containing Myriophyllum, and other aquatic plants, brought from the lake in Kew Gardens. While detected in some few instances growing upon this vegetation, the more luxuriant colony-stocks were discovered forming faintly granular, film-like expansions on the glass or the surface of the water after some days' isolation in a shallow glass receptacle. Until the existence as an independent structure of the entirely transparent or very faintly granular zoocytium was definitely determined, it was presumed that the collared monads that excrete this element were colonies only of a species of Monosiga such as M. socialis, that had developed upon the surface of a bacterial film or other foreign organic mucilage. The isolation of colony-stocks and the registration of the constantly augmented dimensions of this zoocytium pari passu with the increase in number of the contained zooids, speedily demonstrated, however, the incorrectness of this first inference. The import of this film-like excretion being thus determined, the close affinity of the type to Cienkowski's genus Phalanstereum was immediately recognized. Compared with that organism, it at the same time exhibited several important features of distinction, the chief of these being the well developed, in place of the rudimentary condition, of the terminal collar and the exceedingly hyaline instead of coarsely granular mucilaginous zoocytium. The collars in this type agreed essentially, in fact, in form and function, with those of the several genera Monosiga, Codosiga, and Salpingaea previously described. This rudimentary condition of the collar and accompanying coarsely granular condition of the zoocytium in Phalanstereum, and the transparency of this zoocytial element in Protospongia, conjoined with a well-developed collar, are correlations that evidently admit of a logical explanation. In allied forms possessing similar well-developed collars it has been demonstrated by the author that all effete matters are cast out within the discoidal area circumscribed by the base of the structure, and hence in Protospongia they would be thrown out beyond the periphery of the zoocytium, and could not possibly get entangled in its substance. In Phalanstereum, on the other hand, where the collar exists as a rudimentary structure only, no such terminal liberation of the waste products can take place, but instead of this are probably got rid of through the general peripheral surface, as occurs in Rhipidodendron and Spongomonas, and further becoming, as in these genera, incorporated within the substance of the zoocytium. This interpretation is entirely supported by the illustrations of the genus Phalanstereum recently published by Stein, in which this common mucilaginous matrix is depicted as enclosing uniformly distributed coarse granular corpuscles identical in appearance with those that undoubtedly represent fecal rejectamenta in the two previously cited genera.

The instability of contour and extreme plasticity of the constituent sarcod are more marked in the zooids of Protospongia Haackeii than in any other animalcule of the Choano-Flagellate order so far examined. On the slightest disturbance the collars and flagella are withdrawn, and an altogether irregular amœbiform aspect assumed, as shown at a, a, a, a, in Pl. X. Figs. 20 and 21. The binary fission of the zooids during the assumption of a similar amœboïd state, as in Monosiga and Salpingaea, was frequently observed, as also their subdivision into larger or smaller sporular elements, as at 22 a and 20 s of the same plate. The development of these sporular bodies to the characteristic collared state was likewise traced, their initial condition being that of simple uniflagellate monads, which, taking up a position in the zoocytium adjacent to the adult zooids, as shown at Pl. X. Fig. 22 b b, speedily acquire the parent form. The establishment of new colony-stocks by similar but single monoflagellate germs was likewise witnessed. In its initial condition such a
SECTION II. DISCOSTOMATA-SARCOCRYPTA.

founder of the future colony, Pl. X. Fig. 26, was scarcely to be distinguished from an ordinary representative of the genus Oikomonas, it being entirely naked, attached by a prolongation of its posterior extremity, and possessing merely a single terminal flagellum. The collar being next developed, the animalcule for a while was indistinguishable from such a member of the genus Monostiga as M. Steinii, while finally, a thin mucilaginous film being thrown out around its body, see Fig. 27, the appearance presented was that of an early condition of Salpingea ampulla, as delineated at Pl. III. Figs. 19 and 20. From this stage onwards, two or more zooids being now included within the mucilaginous matrix, as shown at Figs. 24 and 25, the characteristic aspect of the genus Protospongia as here defined is permanently assumed. In many of the smaller colony-stocks, as illustrated by Figs. 21 and 23, clear traces remain of their derivation through the quadruple plan of segmentation of a single primary unit.

By far the most interesting point connected with the structural and developmental features of this type remains to be discussed. As previously intimated, it is, so far as known, the nearest concatenating form between the respective groups of the ordinary Choano-Flagellata and the Spongida. Furthermore, it may be consistently accepted as furnishing a stock-form from which by the process of evolution all sponges were primarily derived. A comparison of the figures illustrative of this species with those included in this treatise relating to the organography of the class Spongida, is alone needed to make clear this postulate. On making such comparison it will be at once recognized that typical colony-stocks of Protospongia, as shown at Pl. X. Figs. 20, 21, 22, correspond in a most remarkable manner with a fragment of the mucilaginous cytoblastema, with its incorporated collared monads, amœboform cytoblasts, and sporular elements of any ordinary sponge-stock, and more especially with that of such a non-spiculiferous type as Halisarca Dujardini or H. lobularis. It needs indeed but a slight modification of the disposition of the zooids of Protospongia, to such an extent that in place of protruding on the external surface of the mucilaginous zoocytum, they should debouch upon saccular invaginations of this matrix, to produce what would have to be accepted as an undoubted though very rudimentary sponge-stock. The establishment of free intercommunication between these saccular monad aggregates through the means of tubular canals, is alone wanted to further transform such a sponge-stock into a typical representative of the genus Halisarca.

In all minor structural and developmental details the zooids of the Protospongia Haeckelii accord essentially with the simpler, naked, Choano-Flagellata previously described; but in their extreme plasticity, in their excretion and occupation of a common gelatinous matrix, and in the retention of the more ordinary reproductive products within this matrix, this specific type unmistakably manifests its near affinity to the group of the Spongida.

Section II. DISCOSTOMATA-SARCOCRYPTA
(or SPONGIDA).

Collared monads structurally resembling those of the Discostomata-Gymnozoidea, but hidden or immersed within variously modified intercommunicating chambers of a common gelatinous matrix or cytoblastema, which may or may not be strengthened by supplementary skeletal elements.

The necessity of accepting the sponges as peculiarly modified colony-stocks of collared flagellate Infusoria, which correspond in every essential detail with the simpler or independent types previously described, is abundantly demonstrated in Chapter V., devoted to that special group of organisms, and is indeed self-evident on examination and comparison of the plates in this volume numbered II. to VI. and VII. to X. devoted respectively to the organization of the sponges and
to that of the preceding less complex organic series. As there made clear, the only substantial distinction found to subsist between the Spongida and the independent collared Flagellata is manifested by the circumstance that, while in the latter instance the characteristic collared monads are naked, and more or less completely exposed to view, they are in the case of the Spongida associated together and completely concealed within specialized excavations of a common gelatinous matrix, the zoocytium or cytoplastema. Hence the two groups are here accepted as co-ordinate sections of the same primary subdivision of the Protozoa, which, as intimated on a preceding page, may be conveniently distinguished by the respective titles of the Discostomata-Gymnozoidea and the Discostomata-Sarcocrypta. So far the social types Phalansterium and Protospongia are the nearest ancendant forms between these respective groups, though in all probability such small hiatus as yet exists will be still more effectually obliterated by the results of future investigation.

The further subdivision of the Spongida into minor sections or sub-orders may be most conveniently accomplished with reference to the nature of their skeletal elements, as below.

Sub-Order I. **Myxospongle** No accessory skeletal elements.

II. **Calcispongle** Skeletal elements represented by calcareous spicula.

III. **Silicospongle** Skeletal elements consisting of siliceous spicula.

IV. **Keratospongle** Skeletal elements consisting of horny fibre.

A systematic description of the multitudinous representatives of the Spongida not falling within the scope of the present manual, students desiring to familiarize themselves with their more minute histologic characteristics are referred to the complete works or separate pamphlets of Bowerbank, Carter, Oscar Schmidt, Ernst Haeckel, F. E. Schulze, W. Marshall, and numerous other authorities quoted in the bibliographical list appended to this treatise. In all instances the collared monads, as here described, constitute the one constant and primary factor of the living sponge-stock, the various plans upon which these are grouped together, and more especially the nature and mode of disposition of the skeletal elements, mostly but not universally developed, affording the readiest clue to their generic and specific identification.

Order VI. FLAGELLATA-EUSTOMATA, S. K.

Animalcules possessing one or more flagelliform appendages but no locomotive organs in the form of cilia; a distinct oral aperture or cytostome invariably developed; multiplying by longitudinal or transverse fission or by the subdivision of a whole or part of the body-substance into sporular elements.

The number of forms that have to be included in this highest section of the typical Flagellata has been largely increased through the lately published researches of Professor Stein. Previously, the entire group of the Flagellata, including even the simplest monads, had certainly been accredited by Ehrenberg with the possession of a true oral aperture; his dictum in this connection being accepted by other more recent writers, including Diesing and Pritchard. This attribution to them of so high a structural differentiation was nevertheless, in the majority of instances, purely inferential, being deduced simply from the recognized presence of ingested food-particles within the body-sarcode of the animalcules examined. As demonstrated, however, in this treatise, there exists a very considerable series of forms, scarcely to be distinguished in their broad external characters from the one now about to be introduced, in which solid food-particles, while freely ingested, do not obtain access through a specially differentiated oral aperture, but are taken in indifferently at all points of
the periphery. This series, already described, has received from the author the self-suggestive appellation of the Flagellata-Pantostomata.

Among those instances in which the conclusions arrived at by Ehrenberg concerning the presence of a true mouth have been substantiated by the results of modern investigation, reference may be more especially made to the *Monas grandis* and *semen* of the last-named authority, now included by Stein with his new generic groups *Celomonas* and *Raphidomonas*, and to the two important family series of the Euglenidae and Chrysomonadidae as here circumscribed. Several structural, functional, and developmental phenomena, in addition to those furnished by the ingestive faculties, may be cited as indicative of the higher position in the organic scale occupied by the Eustomatous Flagellate group now under discussion. Among these it may be mentioned that the constituents of the body exhibit as a rule a far more well-defined separation into external and internal sarcode layers, or ectoplasm and endoplasm, than is encountered among the ordinary Pantostomata; the former element, or ectoplasm, often indeed has both the appearance and all the attributes of a true cuticle. In rarer instances, again, such as *Phacus*, *Oxyrrhis*, and *Entosiphon*, the external envelope may become so indurated as to constitute a veritable cuirass as commonly met with amongst the members of the higher Infusoria-Ciliata. Correlated with this firmer development of the ectoplasmic or cuticular element, it is further found that the members of the Eustomata rarely exhibit that plasticity and unsteadiness of contour so generally characteristic of the Pantostomata, and which manifests itself most conspicuously in that order by the tendency of the animalcules to assume at will—though more frequently in connection with the processes of genetic union or encystment—an altogether irregular repent ameboid phase. Concerning the developmental phenomena of these two parallel groups, it is further worthy of note that while among the Pantostomata sporular reproduction is almost invariably accompanied, as in the lower Phytogozoa, by the splitting up of the entire substance of the body—thus involving the death or extinction of the pre-existing zooid or individual—among the Eustomata, as exemplified by the Euglenidse, Chrysomonadidae, and Anisonemidae, such sporular bodies are more frequently developed from the endoplasm alone, or as entirely independent endogenous reproductive elements, the parent zooids, after giving birth to these, continuing their individual existence. Phenomena of a like nature, but exemplified by an exogenous mode of spore or germ production, is also exhibited by *Noctiluca*, and is in all instances indicative of a higher grade of organization than is found to obtain among the Pantostomata or other Flagellata previously described.

A tabular view of the families and genera of the Flagellata-Eustomata, as defined in this volume, is herewith annexed. While, as there shown, the entire series may for convenience be separated into the two sections of the *Eustomata-Monomastiga* and *Eustomata-Dimastiga*, these respective subdivisions are completely bridged in the very natural family group of the Chrysomonadidae by such types as *Chloromonas*, *Chrysomonas*, and *Microglena*.

Section A. EUSTOMATA-MONOMASTIGA

(Flagellum single).

Fam. I. PARAMONADIDÆ, S. K.

Animalcules entirely free-swimming, more or less persistent in form, bearing a single terminal flagellum; endoplasm transparent, colourless, more or less granular; oral aperture distinct, situated near the base of the flagellum.

The presence of a distinct oral aperture alone distinguishes the representatives of this family from those of the Pantostomatous group of the Monadidæ previously
Families and Genera of Flagellata-Eustomata

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Paramonadidae</td>
<td>1. Paramonas.</td>
</tr>
<tr>
<td>Animalcules free-swimming, persistent in form; endoplasm colourless.</td>
<td>2. Petalomonas.</td>
</tr>
<tr>
<td>Much flattened or compressed</td>
<td>3. Atractomonas.</td>
</tr>
<tr>
<td>Elongate or fusiform, subcylindrical</td>
<td>4. Phialomonas.</td>
</tr>
<tr>
<td>Compressed, lunate or ensiform</td>
<td>6. Astasia.</td>
</tr>
<tr>
<td>With a distinct tubular pharynx</td>
<td>7. Colpodella.</td>
</tr>
<tr>
<td>No distinct pharynx</td>
<td>8. Euglena.</td>
</tr>
<tr>
<td>Highly metabolic</td>
<td>9. Amblypholis.</td>
</tr>
<tr>
<td>Naked</td>
<td>10. Phacus.</td>
</tr>
<tr>
<td>Persistent in shape</td>
<td>11. Chloropeltis.</td>
</tr>
<tr>
<td>No abnormal pharyngeal dilatation</td>
<td>12. Trachelomonas.</td>
</tr>
<tr>
<td>Loricate</td>
<td>15. Asteoglena.</td>
</tr>
<tr>
<td>Trichocysts conspicuously developed</td>
<td>16. Colacium.</td>
</tr>
<tr>
<td>No trichocysts</td>
<td>17. Noctiluca.</td>
</tr>
<tr>
<td>Solitary, inhabiting transparent lorica</td>
<td>18. Leptodiscus.</td>
</tr>
<tr>
<td>Grouped socially on a simple or branching pedicle</td>
<td></td>
</tr>
<tr>
<td>Sedentary</td>
<td></td>
</tr>
<tr>
<td>IV. Noctilucidae</td>
<td></td>
</tr>
<tr>
<td>Animalcules subspheroidal, with a supplementary tentaculiform appendage</td>
<td></td>
</tr>
<tr>
<td>Animalcules discoidal, no supplementary tentacle</td>
<td></td>
</tr>
<tr>
<td>Endoplasm highly vacuolar or reticulate, phosphorescent</td>
<td></td>
</tr>
</tbody>
</table>

A. Eustomata-Monomastiga (Flagellum single)
Families and Genera of Flagellata-Eustomata.

V. Chrysomonadidae

Endoplasm enclosing two laterally-disposed olive or yellow pigment-bands. Flagellate appendages, with but rare exceptions, two in number, of similar or diverse length.

One flagellum.

- Animalcules persistent in shape
- Animalcules soft and plastic
 - With a distinct pharynx
 - Without a distinct pharynx
 - Flagella inserted beneath a lip-like prominence
 - Flagella inserted in a lateral or ventral fossa

Two flagella: naked.

- Affixed to a rigid pedicle
- United in spheroidal free-floating clusters
- Grouped upon a simple or branching pedicle
- Free-swimming
- Sedentary
 - Body free within the investing lorica
 - United to lorica by a thread-like pedicle

Two flagella: loricated.

- Forming a compound branching zoetheicum
- United in free-floating spheroidal clusters

Two flagella: immersed within a gelatinous zoozooytum.

- Zooids closely approximated without independent pedicles
- Zooids not directly united, possessing independent contractile pedicles
- Endoplasm coloured brilliant green

VI. Zygoscladidae

Flagellum similar in character, both vibratile; not enclosing coloured pigment-bands.

VII. Chilomonadidae

Anterior border labiate or excavate; one of the two flagella convolute and adherent.

VIII. Anisomastidae

Symmetrically ovate or elongate; flagella diverse, one vibratile, the other trailing and adherent.

IX. Sphenomonadidae

Animalcules prismatic, persistent in shape; two vibratile flagella, one long and one short.

- Polyhedral, having four or more longitudinal keel-like ridges

B. Eustomata-Dimastiga.

(Two flagella.)

- Highly metabolic
 - Naked
 - Endoplasm transparent, granular
 - Entirely free-swimming
 - Free-swimming or repent
 - Loricate, free-swimming
 - Flagella diverse, one long and one short
 - Flagella equal or subequal

- Anterior border symmetrically labiate
- Anterior border obliquely excavate

- Variable in form, cuticle soft
 - Cuticle elastic, highly metabolic
 - Not metabolic, simply soft and plastic

- Persistent in shape, cuticular surface indurated
 - Pharynx distinct, but not protrusible
 - Pharynx protrusible as a separate horny tube

- 35. Zygoscladus
- 36. Distigma
- 37. Cryptoglena
- 38. Sterromonas
- 39. Dinomonas
- 40. Chilomonas
- 41. Oxyrrhis
- 42. Heterocentron
- 43. Diplomastis
- 44. Anisomastus
- 45. Entostrophus
- 46. Sphenomonas
ORDER FLAGELLATA-EUSTOMATA.

described, and with which, so far as external contour only is concerned, they in many instances exhibit the closest possible correspondence.

Genus I. Paramonas, S.K.

(Greek, para, close to; monas.)

Animalcules free-swimming, ovate or globular, uniflagellate, more or less persistent in shape, incepting food-substances through a distinct oral aperture which is situated anteriorly at the base of the flagellum.

The above generic title is here instituted for the reception of several forms referred to the genus *Monas* by De Fromentel,* but which are declared by him to possess a distinct oral aperture. A still larger number of the species hitherto relegated to the same generic group will probably have to be transferred in a similar manner to this present one, as soon as a more perfect knowledge of their minute structure and life-history shall have been gained. Owing to the greater density, though not absolute rigidity, of their cuticular investment, the representatives of the genus *Paramonas*, in addition to possessing a distinct oral aperture, are further characterized by their comparatively persistent shape. These features, taken collectively, secure for them a distinction from the members of the genus *Monas*, similar to that which is further on shown to subsist between the otherwise superficially corresponding generic types *Heteromita*, *Heteronema*, and *Anisonema*. The genus *Petalomonas* of Stein, represented by the *Cyclidium abscissum*, and possibly also the *C. nodulosum* and *C. crassum* of Dujardin, necessarily approaches most closely to *Paramonas*. As, however, the flattened and leaf-like contour of the body is insisted on as a leading characteristic of Stein's genus, it is requisite to establish an independent one for the globular or ovate forms included under the present title.

Paramonas globosa, From. sp. Pl. XX. Fig. 1.

Body spherical, transparent, enclosing red granules; contractile vesicle subcentral; oral aperture conspicuous, situated at the base of the flagellum. Length 1–2400". HAB.—Fresh water.

Identical with the *Monas globosa* of De Fromentel.

Paramonas ovum, From. sp.

Body ovate, transparent, coarsely granulate; flagellum constantly vibrating; mouth situated close to the base of this organ. Length 1–1500". HAB.—Fresh water.

The *Monas ovum* of De Fromentel.

Paramonas stellata, From. sp. Pl. XX. Fig. 2.

Body ovate or spherical; endoplasm green and granulate; oral aperture apical, stellate; flagellum long and fine, constantly vibrating. Length 1–1500". HAB.—Fresh water.

Both this and the succeeding species, characterized by De Fromentel as having their endoplasmic substance coloured green, are referred provisionally only to the genus *Paramonas*. If such coloured matter represents a permanent constituent,

* 'Études sur les Microzoaires,' Paris, 1876.
GENUS PETALOMONAS.

and not incepted food-substance, they are referable probably to the family groups of the Euglenidae or Chrysomonadidae. The present type was originally included by De Fromentel in the genus Monas.

Paramonas deses, Ehr. sp.

Body oblong, rounded at the two extremities, colour bright green, oral aperture distinct, situated at the base of the flagellum, the latter organ long and undulating; contractile vesicle central. Length 1-1200". HAB.—Fresh water; solitary.

Identical with the Monas deses of Ehrenberg and De Fromentel.

GENUS II. PETALOMONAS, Stein.

Animalcules free-swimming, ovate, depressed, with a single long vibratile flagellum; cuticular surface indurated, often carinate; oral aperture distinct, situated close to the base of the flagellum.

Stein first founded this genus upon the Cyclidium abscissum of Dujardin, to which, in his recently published work,* several distinct forms are added. Dujardin's generic title of Cyclidium having been previously employed by Ehrenberg for certain ciliate animalcules, cannot be retained among the Flagellata.

Petalomonas abscissa, Duj. sp. Pl. XX. Figs. 5 and 6.

Body subtriangular or irregularly ovate, flattened and leaf-like, slightly pointed anteriorly, the posterior margin somewhat truncate, the dorsal surface traversed longitudinally with one or occasionally two keel-like elevations; parenchyma transparent, slightly granular; flagellum slender throughout, about twice the length of the body, directed rigidly in advance, and vibrating only at its anterior extremity; movements slow and even; multiplying by longitudinal subdivision. Length 1-900". HAB.—River water.

While the subtriangular outline indicated in the accompanying figures represents the more typical contour of this species, Stein's illustrations show that examples occur in which the posterior border is evenly rounded as in P. mediocanellata, while more rarely the lateral borders may be irregularly contorted, or two keel-like elevations are developed on the dorsal surface.

Petalomonas mediocanellata, Stein. Pl. XX. Fig. 3.

Body flattened, resembling an apple-pip in shape, acuminately pointed anteriorly, rounded and widest posteriorly, about twice as long as broad, a straight narrow groove or channel extending down the median line of the ventral surface from the oral aperture nearly to the posterior border; flagellum equalling or slightly exceeding the length of the body; contractile vesicle situated towards the anterior extremity at the left-hand side of the median groove, the endoplasm located further back on the opposite side of this same channel. Length 1-700". HAB.—Fresh water.

* 'Infusionsthiere,' Abth. iii., 1878.
ORDER FLAGELLATA-EUSTOMATA.

Petalomonas sinuata, Stein. Pl. XX. Fig. 4.

Body flattened, obtusely pointed anteriorly; the posterior margin widest, singly or doubly emarginate, its two lateral angles prolonged outwards, no median ridge or channel, but a short oblique groove produced from the oral aperture towards the right-hand border; flagellum nearly equalling twice the length of the body; endoplast and contractile vesicle as in *P. mediocanellata*. Length 1–800".

HAB.—Fresh water, dividing by longitudinal fission.

Petalomonas ervilia, Stein. Pl. XX. Fig. 7.

Body flattened, elongate, ovate or elliptical, slightly pointed anteriorly, twice as long as broad; the ventral surface with a broad groove or channel that extends along the left lateral border from the anterior to the posterior extremity; flagellum exceeding the length of the body; contractile vesicle and endoplast situated as in the preceding species, the former sometimes presenting a compound aspect. Length 1–580". HAB.—Fresh water.

Doubtful species.

The *Cyclidium nodulosum* and *crassum* of Dujardin are probably referable to the genus *Petalomonas*, but the presence of an oral aperture in these forms has yet to be demonstrated. Their brief diagnostic characters, as given by Dujardin, are herewith appended.

Cyclidium (Petalomonas ?) nodulosum, Duj.—Body flat, discoidal, nodular and vacuolate, movements slow. Length 1–500".

HAB.—River water, with *Myriophyllum*.

Cyclidium (Petalomonas ?) crassum, Duj.—Body thick and rounded at the edges; flagellum thickest at the base, slightly undulating; movements active and in a zigzag direction. Length 1–1700". HAB.—Ditch water.

A small animalcule, as represented at Pl. XX. Figs. 8 and 9, has been recently obtained by the author from hay infusions, whose position would appear to be among or closely adjacent to the representatives of the genus *Petalomonas*. Their contour, while persistent, is less flattened than that of the more normal species previously described, and was observed to vary considerably in different individual zooids. In most instances, as at Fig. 8, the animalcules were symmetrically ovate, as in *P. abactisum*, but somewhat more elongate and less flattened, without any groove or keel-like ridge, while more rarely they were altogether irregular and nodulate, as shown at Fig. 9. The average length of these animalcules did not exceed 1–2500".

The mode of progress through the water normally exhibited by this type is peculiar, and may assist perhaps in the substantiation or otherwise of its claim for admission to the generic group wherein it is here relegated, though unfortunately no data have as yet been published concerning the characteristic comportment of the several species already enumerated. Such locomotion in the present instance was always accomplished stealthily forwards and in a straight line, the body and terminal flagellum being depressed at the angle indicated in the accompanying illustrations; the distal end only of this last-named appendage was maintained in a state of vibration, and was thrust here and there over the surface of the slide or surrounding debris, apparently in search of food. Not unfrequently the
animalcules effect a momentary adherence by the distal region of this flagellum, and swinging their bodies round upon it as though on a pivot, direct their course in an opposite direction. It is provisionally proposed to distinguish this species by the name of Petalononas irregularis. The presence of a distinct oral aperture has not as yet been definitely certified.

Genus III. Atractonema, Stein.

Animalcules free-swimming, persistent in shape, fusiform or elongate; flagellum single, terminal; oral aperture at the base of the flagellum, followed by a distinct tubular pharynx, the posterior termination of which apparently communicates freely with the contractile vesicle; endoplasm subcentral; endoplasm transparent, finely granular. Inhabiting fresh water.

Atractonema teres, Stein. Pl. XX. Figs. 10–12.

Body elongate fusiform, widest centrally, attenuately pointed at each extremity, four or five times as long as broad; flagellum slender, vibratile, equalling the body in length; posterior termination of the pharynx, and communicating contractile vesicle almost joining the central spheroidal endoplasm; endoplasm finely granular, often enclosing between the endoplasm and posterior termination a discoidal amyloaceous corpuscle. Length 1–640'.

Hab.—Fresh water, dividing by longitudinal fission; movements, repent and rotatory.

In accordance with the index to Stein's figures, the representatives of this species swim freely through the water or creep, head downwards, with the attenuate oral region applied to the surface of the objects traversed. In some of the examples delineated, see Pl. XX. Fig. 12, the flagellum has disappeared, and the central endoplasm become enlarged and broken up into spore-like bodies.

Genus IV. Phialonema, Stein.

Animalcules free-swimming, persistent in form, more or less flask-shaped; oral aperture terminal, dilated, bearing on one side a single flagellum, succeeded by a curved tubular pharyngeal dilatation, which is produced backwards to or beyond the centre of the body; endoplasm transparent granular; contractile vesicle and endoplasm distinct. Inhabiting fresh water.

Phialonema cyclostomum, Stein. Pl. XX. Figs. 13 and 14.

Body flask-shaped, somewhat gibbous, about three times as long as broad, widest centrally, pointed posteriorly, with a neck-like anterior prolongation, the extremity of which is obliquely truncate, and forms a circular, thick-bordered, expanded rim around the oral excavation; curved tubular pharynx, often produced backwards to within a short distance of the posterior extremity, its distal end much dilated; cuticular surface usually obliquely striate, but these striae occasionally replaced by a few spirally disposed projecting ribs; flagellum short, vibratile, nearly equalling the body

* 'Infusionsthere,' Abth. iii., 1878.
in length; endoplasm subcentral; contractile vesicle situated towards the anterior extremity, and to one side of the pharynx. Length 1–500".

HAB.—Fresh water.

The animalcules of this species, in addition to swimming freely in the water, creep over the surfaces of submerged objects, with their oral region applied to the same, much in the same manner as Atractonema. An approach to the repent mode of progression exhibited by these two last-described generic forms would appear to be foreshadowed in the species provisionally referred by the author to the genus Petalomonas, under the name of P. irregularis, and in which the distal extremity of the flagellum persistently maintains a close relationship with the surface of the ground or objects traversed.

Genus V. MENOIDIUM, Perty.

Animalcules free-swimming, persistent in form, lunate or ensiform, compressed, bearing a single terminal flagellum, at the base of which is situated the oral aperture, followed by a minute tubular pharynx; endoplasm transparent, granular; contractile vesicle and endoplasm conspicuous, the former situated close to the termination of the pharynx. Inhabiting fresh water; movements oscillating or rotatory.

Menoidium pellucidum, Pty. Pl. XX. Figs. 15 and 16.

Body lunate, compressed, four to six times as long as broad, with a more thickened, convex ventral, and concave dorsal border, most attenuate anteriorly, its superior edge sometimes developed above the oral aperture as a projecting tooth-like spine; flagellum slender, equalling the body in length; endoplasm transparent, more or less granular, usually containing one or more large ovate amylaceous corpuscles; contractile vesicle, apparently communicating with the termination of the pharynx; endoplasm subcentral. Length 1–600" to 1–400". HAB.—Fresh water.

The general form of the body of this animalcule may be compared to that of a minute transparent Closterium. As originally figured and described by Perty, the terminal flagellum is not represented, and its existence only suspected. Stein* is the first who has published an amplified delineation of its contour and component structure, the chief details of which the author is in a position to corroborate, having recently, November 1878, encountered the species in marsh water obtained from the neighbourhood of St. Heliers, Jersey. In none of the examples as yet examined, however, was detected the anterior tooth-like projection characteristic of the majority of Stein's figures, while in all cases the endoplasm exhibited a feature previously unnoticed. In Stein's delineations the granulation of this element presents no definite plan of distribution, and is diversely developed in different individuals. In those personally investigated, the granulation was confined entirely to the posterior region of the body, and consisted of innumerable minute spherical corpuscles of uniform size, as shown at Pl. XX. Fig. 15. In most of these there was a single large, elliptical, subcentral, amylaceous corpuscle; but in some instances, as in Stein's figures, two or more smaller ones. An exceptional specimen exhibited an inflated and almost cylindrical in place of the usually compressed body contour. Dead examples occasionally occur in which the flagellum has disappeared, but the animalcule still retains its distinct tubular pharynx, thus demonstrating the indurated character of the walls of this structure.

* 'Infusionsthiere,' Abth. iii., 1878.
Fam. II. ASTASIADÆ, S. K.

Animalcules mostly free-swimming, exceedingly plastic and variable in form, bearing a single terminal flagellum; oral aperture distinct; endoplasm colourless.

Genus I. ASTASIA, Ehr.

Animalcules free-swimming, ovate or elongate, very elastic and changeable in form, metabolic, invested by a distinct cuticula; flagellum single, projecting from the more attenuate anterior extremity; oral aperture situated close to the base of the insertion of the flagellum, highly extensible, continued into a long, straight, tubular pharyngeal tract; endoplasm transparent, enclosing incepted granules, but not assimilating chlorophyll or other coloured matter; contractile vesicle and endoplast distinct. Inhabiting fresh and salt water.

Considerable difficulty has usually attended the separation of the members of this genus from those of Euglena, a circumstance that must be attributed to the imperfection of the distinctive characters of the two genera as first laid down by Ehrenberg, accompanied by his inclusion under the same generic heading of animalcules belonging to each of the two types. Adopting, nevertheless, the distinctions first pointed out by Dujardin, and since recognized by Carter and other later writers, it becomes evident that the genera Euglena and Astasia are not only easily distinguishable, but appertain to two widely distinct family groups. In accordance with their respective diagnoses formulated in this volume, it will be found that while in external contour and in the remarkable elasticity of the endoplasmic element with its investing cuticula the two generic types bear a considerable superficial resemblance, a strongly marked structural differentiation is developed immediately beneath. One of the most important distinctions that thus presents itself pertains to the characters of the ingestive or buccal apparatus. In Astasia this consists of a large, widely dilatable but simple aperture, continued backwards into a clearly defined pharyngeal tract, through which food-particles of a considerable size are readily transported. In Euglena, on the other hand, the oral aperture, while correlated with a peculiar modification of the anterior extremity of the body, is not dilatable or continuous with a distinct pharyngeal tract, and is capable of incepting food-particles of the minutest comparative dimensions only. The distinction subsisting between the consistence of the endoplasm or parenchyma in the two genera is even more easily appreciated. In Astasia this structural element consists of clear and apparently homogeneous sarcode, similar to that encountered among all the more ordinary transparent Flagellata, coloured matter, if present, remaining distinctly isolated, and clearly exhibiting its extraneous derivation; neither in Astasia is there ever represented that coloured pigmentary corpuscle, the so-called "eye-spot" of the earlier authors, which, although of uncertain value for the purposes of specific discrimination, is broadly characteristic of the group to which Euglena appertains. The endoplasm throughout all the representatives of the last-named genus is further conspicuous for its brilliant colouring, this colouring matter not being held temporarily in suspension, but being most intimately incorporated or assimilated with the substance of the endoplasm.

Dujardin has proposed to separate from the genus Astasia certain species in which the body was of a more globular shape, and the terminal flagellum thicker and more rigid at its base, proposing for them originally the title of Pyronema, and afterwards that of Peranema. Out of the two representative forms of this genus described by that authority, however, one, P. protracta, is now recognized to be identical with Ehrenberg's Trachelius (Astasia) trichophora, while his P. globulus
ORDER FLAGELLATA-EUSTOMATA.

has been demonstrated by the present author to be a transitional condition only of a Radiolarian closely allied to, if not identical with, Actinophrys sol (see p. 225). Stein, for reasons as yet unexplained, figures in his recently published volume,* as members of the genus Astasia, biflagellate animalcules corresponding most nearly with the forms upon which Dujardin has conferred the name of Heteronema, while the typical representative of the present genus, the Astasia (Trachelius) trichophora of Ehrenberg, is referred to Dujardin’s genus Peranema, which, as just shown, possesses no sound claim for retention.

Astasia trichophora, Ehr. sp. Pl. XX. Figs. 17-21.

Body highly metabolic, variable in shape, more usually irregularly pyriform or clavate, widest posteriorly and tapering gradually towards the pointed anterior extremity, the posterior end sometimes with a short caudiform prolongation; flagellum thick and cord-like, about one and a half times longer than the body; contractile vesicle situated anteriorly, closely adjacent to the centre of the pharyngeal track; endoplasm spherical, central, of large size; endoplasm clear and transparent. Length of body 1-1200" to 1-370". HAB.—Marsh and stagnant water.

This animalcule was first described under the title of Trachelius trichophorus by Ehrenberg, who mistook the thick cord-like flagellum for an attenuate neck-like prolongation of the body, similar to that met with in the ciliated genera Lacyrmarya, Amphileptus, and Trachelius. Claparède was the first to indicate its rightful position, but not before it had been redescribed by Dujardin under the titles of both Peranema protracta and Astasia limpida. The varieties of contour assumed by this form are indeed so manifold and protean, that it seems highly probable that many, if not the majority, of species hitherto referred to the genus are merely slightly modified expressions of this single type. In its movements, which are of two kinds, repent and natatory, the body is at one moment perfectly symmetrical and perhaps almost cylindrical, while during the next it is writhing in amoeba-like contortions, and, compared with its former aspect, almost unrecognizable. These contortions, as already remarked by H. James-Clark, do not consist, as in Amoeba, of an actual outflowing of the substance of the sarcod or parenchyma, but from an exceedingly variable puckering of the cuticular surface, always accompanied by a more or less longitudinal contraction of the body. This is most clearly apparent when the animalcule becomes doubled on itself by an abrupt retrogressive motion.

Professor Clark † has proposed to demonstrate that the occasionally conspicuous caudiform prolongation of the posterior extremity of the body of this species is the rudimentary homologue of the trailing flagellum, or, as he has termed it, the “gubernaculum” of Anisonema and other biflagellate types. Its thoroughly inconstant and fugacious character, however, scarcely favours this interpretation. Although the possession by the representatives of the genus Astasia of a distinct terminal oral aperture has been recognized since the time of Ehrenberg, the connection with this structure of a distinct indurated pharynx or so-called buccal tube was first recognized and described by Mr. H. J. Carter in his notes on the Infusoria of Bombay, published in the ‘Annals of Natural History’ for August–September 1856, his observations in this direction being abundantly confirmed by the later investigations of Stein and Bütschli. Mr. Carter, in the publication just referred to, has adopted for this species Dujardin’s name of Astasia limpida. An illustration of the extreme elasticity possessed by the oral aperture of this type is furnished by one of Bütschli’s figures, in which an animalcule is represented as incepting a spherical organism, apparently a monad, whose diameter considerably exceeds that of its own body. A corresponding extensibility of the oral aperture is encountered in the biflagellate type Dinomonas,

described later on. The contractile vesicle of *Astasia trichophora* has been shown by Bütschli to exhibit a somewhat complex character, the water discharged in the act of systole being partly driven into smaller lateral diverticula, as obtains in *Entosiphon* and certain species of *Anisomena*, and as also observable in *Paramecium* and many higher Ciliata. Multiplication by fission in this species takes a longitudinal direction. The presence of endogenously developed germs, as represented at Pl. XX. Fig. 18, has been recorded by Mr. Carter.

Astasia contorta, Duj.

Body colourless, semi-transparent, flexible and contractile, sub-cylindrical, widest in the centre, bluntly pointed at the two extremities; the surface of the cuticle obliquely and closely striate, so as to impart to it a twisted aspect. Length 1-425". HAB.—Salt water.

A second marine species described by Dujardin under the name of *Astasia inflata*, having the cuticular surface obliquely striate in a similar manner, and the same approximate dimensions, but with a more ovoid body, is apparently a variation only of *A. contorta*.

Astasia flavicans, Ehr.

Body extensile, conical or subcylindrical, rounded anteriorly, with a short, blunt, tail-like posterior prolongation; parenchyma enclosing yellowish granules. Length of body 1-430". HAB.—Ditch-water.

Astasia pusilla, Ehr.

Body colourless, extensile, conical, largest and rounded posteriorly, and with a short pointed posterior prolongation; flagellum twice the length of the body. Length of body 1-1440" to 1-400". HAB.—Ditch-water; social.

This and the preceding are apparently variations only of the same form, and are, as already remarked by Carter, closely allied to if not identical with the *Astasia (Trachelius) trichophora* of Ehrenberg and *A. limpida* of Dujardin.

Astasia longifilis, Perty.

Body persistent in form, hyaline, enclosing pale-green granules, the anterior half exhibiting a longitudinal plait or furrow; flagellum at least three times the length of the body. Length 1-1000".

Doubtful Species.

A number of fresh-water species have recently been added to the genus *Astasia* by De Fromentel,* but are in the majority of cases too ill-defined for re-identification. The figures accompanying his descriptions might at the same time do duty in most instances for one or other of the protean phases of *Astasia trichophora*. A slightly amended translation of Fromentel’s diagnoses of such forms only as seem to possess appreciable distinctive characters is herewith appended.

Astasia utriculus, From.—Body flask-shaped, inflated at the base and rounded at the summit; flagellum inserted somewhat on one side of the neck-shaped anterior portion. Length 1-800". His *Astasia cucurbita*, of similar size and shape, is apparently identical with this form.

* "Études sur les Microzoaires," Paris, 1876.

ORDER FLAGELLATA-EUSTOMATA.

Astasia deformis, From.—Body hyaline, with irregular digitate expansions; contractile vesicles posteriorly situated. Length 1-600".

Astasia turbo, From.—Body top-shaped, with a dilated, somewhat flattened central portion, and attenuate anterior and posterior regions; parenchyma finely granulate; flagellum long and slender. Length 1-400".

Astasia fusiformis, From.—Body fusiform, attenuate at the two extremities; contractile vesicle conspicuous, posteriorly situated. Length 1-600".

Astasia crassa, From.—Body highly contractile, subspherical, often changing its form, but retaining an attenuate, tail-like, posterior prolongation; flagellum long and slender; parenchyma white and granular. Length 1-700".

Astasia regularis, From.—Body regularly oval, slightly flattened on one side; pharyngeal tract conspicuous; parenchyma enclosing coloured granules. Length 1-1000".

The *Trachelius dendrophilus* of Ehrenberg*—"body ovate, subacute at each extremity, proboscis flagelliform, slender and pointed, more than twice the length of the body. Length 1-3456"." Found among moss from trees, with habits like those of *Trachelius (Astasia) trichophora*—is apparently a minute representative of the present genus.

GENUS II. COLPODELLA, Cienkowski.

Animalcules free-swimming or adherent, ovate or elongate, bearing a single anterior terminal flagellum, at the base of which is a suctorial oral aperture; contractile vesicle and endoplast conspicuous. Habits predatory, preying upon various minute Phytozoa, the cell-walls of which they perforate, and abstract the contents.

In contour and in the character of the single flagellate appendage the representatives of this genus are scarcely to be distinguished from those of *Monas* or *Paramonas*, and might, unless observed in the act of feeding, be relegated to one of these two genera.

Colpodella pugnax, Cienk. Pl. XX. Fig. 22.

Body somewhat variable in form, its most characteristic shape elongate, semilunate, pointed at each extremity, with a flat ventral and convex dorsal border; flagellum equalling or slightly exceeding the body in length; contractile vesicle single, circular, situated close to the ventral border at a short distance from the posterior extremity; endoplast spherical, anteriorly located. Length 1-2000".

HAB.—Fresh water, preying upon *Chlamydomonas pulvisculus*.

According to Cienkowski† the zooids of *Colpodella pugnax*, after fully satisfying their hunger by the extraction of the cell-contents of one or more specimens of the above-named protophyte, become encysted, and the enclosed bodies split up into eight or more sporular elements. These subsequently make their

† 'Archiv für Mikroskopischer Anatomie,' Bd. i., 1865.
escape from the cysts in a form identical with that of the parent, but of smaller size. Not unfrequently, as shown at Pl. XX. Fig. 22, two or three Colpodella fasten themselves simultaneously to a single Chlamydomonas, and perforating its body-wall, rapidly reduce it to an empty shell. No instance of the coalescence or fusion of two or more individual zooids has as yet been recorded, but in all probability occasionally takes place.

Fam. III. EUGLENIDÆ, Stein.

Animalcules free-swimming or sedentary, naked or loricate, solitary or united in social colonies; flagellum single, terminal; oral aperture distinct; endoplasm usually coloured brilliant green, more rarely red, through the assimilation of chlorophyllaceous substances, often enclosing several highly refracted corpuscles of an apparently starch-like or amylaceous nature; one or more brightly coloured eye-like pigment-specks frequently developed at the anterior extremity; contractile vesicle and endoplast conspicuous, the former usually located close to the anterior border. Multiplying by longitudinal and transverse fission, by the subdivision of the entire body-substance into sporular elements, and by the development of independent germinal bodies out of the substance of the endoplasm.

The members of this highly characteristic and very natural family group are readily recognized in connection with the brilliant coloration—the prevailing hue being green—of the endoplasmic elements, which under normal conditions more or less conspicuously distinguishes every one of the considerable number of generic and specific types as herewith comprised. The common occurrence within the body-substance of variously shaped corpuscles of considerable size and of an apparent amylaceous or starch-like nature, as also the endogenous mode of reproduction, manifested by the enlargement and subdivision of the central endoplasm or nucleus, yield supplementary distinctive features of importance. With respect to the amylaceous corpuscles, it is worthy of remark that in the case of those of elongate rectangular contour developed in *Euglena deses*, Dujardin has attributed to them the nature of crystals of sulphate of lime.

Genus I. EUGLENA, Ehrenberg.

Animalcules free-swimming, more or less fusiform or elongate, exceedingly flexible and changeable in shape; bounded by an elastic and highly contractile cuticulum, terminating posteriorly in a more or less developed tail-like prolongation; endoplasm usually tinged bright green or red through the assimilation of chlorophyll or other colouring matter; flagellum single, slender and flexible throughout, issuing from an anterior funicular, notch-like excavation, at the bottom of which a minute oral aperture is situated; contractile vesicle and endoplasm conspicuous; one or more distinct eye-like pigment-spots usually present at the anterior extremity. Inhabiting fresh, stagnant, and brackish waters; solitary, or occurring in such numbers on the surface of the water as to impart to it a highly characteristic feature, even as seen with the unaided vision. Increasing by longitudinal fission, and by the production of germs through the subdivision of the endoplasm or of the entire mass of the internal parenchyma.

In their general contour and extreme flexibility, which permits them at will to assume the most varied and protean shapes, the members of the genus *Euglena* so
closely correspond with those of Astasia that the two have been usually included in the same family. By Ehrenberg, indeed, the presence or absence of the so-called coloured eye-speck was regarded as representing the only distinctive feature, the natural sequence to such an artificial distinction being that many forms have been referred by him to the genus Astasia which properly belong to the one now under consideration. Dujardin was the first to point out the unreliable character of Ehrenberg's proposed diagnosis, substituting for it the distinctions here maintained, afforded by the coloured or transparent consistency of the endoplasm. This last-named characteristic may still be adopted as furnishing a safe and speedy means of distinguishing between the representatives of the two respective genera, although, as will be presently shown, much more important structural differences exist. The colouring matter of Euglena—most usually green and apparently partaking of the nature of chlorophyll—which invariably, under normal conditions, enters to a greater or less extent into the composition of the endoplasmic layer of the various species, is, as already intimated in the account given of the genus Astasia, not scattered in an irregular granular manner, as in numerous other infusorial forms, denoting by such a distribution its foreign nature and temporary lodgment only, but permeates its substance so completely as to be inseparable from it under the highest magnifying power, and remaining as intimately amalgamated with it when, as described later on, it breaks up within the integument into germinal masses. In this manner the endoplasm of Euglena is, as it were, indeed, more or less completely stained with the characteristic hue peculiar to the species.

The possession by Euglena of a distinct oral aperture, and its capacity of incipient solid particles of food through this orifice, have not up to a recent date been clearly demonstrated. Stein, however,* in the year 1867, went so far as to attribute the office of such a structure to the notch-like anterior cleft of Amblyphis, and which he described as being followed by a distinct pharyngeal tract; a similar interpretation was also arrived at by him with reference to the smaller anterior notch of Euglena, though in no instance was the passage of food-particles directly determined. Still later,† this authority has represented a tubular oral aperture as pertaining to all of the members of this family group as here comprised. The apparent absence of a distinct oral apparatus and digestive capacity, taken together with the green hue of the body-plasma, previously induced most modern authorities, including Mr. Carter, to deny to the representatives of Euglena and its allies the rank of animal organisms, they referring them rather to the division of the Protophyta or lower unicellular plants. The present author's views, to within a comparatively recent date, harmonized with this decision, but a still later and more exhaustive examination of the type form of the genus, E. viridis, made in April 1877, has resulted in the adoption of an entirely opposite opinion. Keeping animalcules of this species for a prolonged interval in water with finely pulverized carmine, and submitting them to a magnification of 800 diameters and upwards, the passage into their bodies at the anterior extremity of exceedingly fine particles of this pigment was repeatedly observed, as also the accumulation, in various parts of the body-substance, of small globular aggregations of the particles ingested. Hitherto this anterior region in Euglena has been represented as exhibiting a bilabiate aspect, and the flagellum as a thread-like extension of the upper of the two lip-like prominences. With the aid of the high magnifying power employed on this occasion, it was, however, clearly shown that the inner surfaces of these lip-like prominences actually represented the upper and lower boundary walls of a conical or infundibular excavation or vestibulum, the innermost recess of which fulfils the office of an oral aperture by permitting the free passage of exceedingly minute food-particles. This infundibular cleft, the walls of which are so thin and transparent as to require the aid of the highest powers of the microscope for their satisfactory delineation, are at once suggestive of the infundibular, collar-like, pre-oral expansion of the Choanophorous order of the Flagellata Codosiga, Salpingcea, &c., and may not

* 'Infusionsthiere,' Abth. ii., 1867.
† Ibid., Abth. iii., 1878.
improbably be to some extent homologous with it. The flagellum was in all cases demonstrated to take its origin within the interior and close to the bottom of the infundibuliform excavation.

Euglena viridis, Ehr. Pl. XX. Figs. 29–51.

Body elongate, subcylindrical or fusiform, exceedingly flexible and variable in shape, mostly rounded anteriorly, and with a short, transparent, conically pointed, tail-like posterior prolongation; cuticular surface faintly striate obliquely; endoplasm usually entirely bright green, but sometimes changing to dark orange or red; flagellum slender, exceeding the body in length, a red pigment-spot generally present at the anterior extremity; contractile vesicle situated at the anterior extremity, close to the coloured pigment-spot; endoplasm, spherical, subcentral. Length 1–600" to 1–140".

Hab.—Pond and stagnant water, on the surface of which it frequently occurs in vast shoals.

The aspects presented by this animalcule under various developmental or external conditions are so numerous and diverse as to have led to its description by the earlier writers under several specific titles. There can be little doubt that the *Euglena sanguinea* of Ehrenberg, having the same external form, but of a blood-red colour, or variegated with red and green, represents one of the matured phases of the species now under consideration, while the *E. hyalina* of the same authority illustrates a still less well-marked variation, in which, through probably the absence of suitable food-material, the endoplasm is almost completely transparent. It is maintained by Perty that the *Amblyophis viridis* of Ehrenberg—which has received a separate generic title on account merely of the rounded instead of pointed and more tail-like posterior extremity—is also a variation only of *Euglena viridis*, it occurring in company with the normal animalcules, and according to him being reproduced directly from them. As the latter generic distinction is, however, allowed by more recent writers, including more especially Stein, it appears desirable to retain it in this treatise.

Endogenous multiplication, manifested by the division of the entire coloured inner substance of *Euglena viridis* into germs of variable number and subfusciform or irregular contour, as shown at Pl. XX. Figs. 36 and 37, and in a manner most nearly resembling that already recorded of *Polytoma uvella*, was observed by the present author in connection with the observations relating to the oral apparatus previously described, as also encystment, attended sometimes by and sometimes without the coalescence of two individual zooids. The result of the process of encystment, as shown at Pl. XX. Figs. 49 and 50, was the breaking up of the entire protoplasmic body-contents into numerous globular spore-like bodies, which were ultimately released as small, green, creeping amoebae, Fig. 51, possessing at this early stage no trace of the flagellum, oral aperture, or pigment-spot which were subsequently acquired. The fusiform zooids produced by the subdivision of the internal substance of the motile *Euglena* appear on the contrary to be furnished in most instances with both a flagellum and eye-speck, on bursting through the investing membrane of the parent cell; this observation is further confirmed by the investigations of both Kolliker and Mr. Carter. In addition to the reproductive form of encystment just described, *Euglena* is in the habit, upon the drying up of the ponds or ditches that contain it, of assuming a spherical form and, throwing around itself a gelatinous envelope which becomes gradually indurated, of remaining in this quiescent state until the return of genial conditions. In this manner the temporarily encysted *Euglena* often form film-like expansions of considerable extent, and have been mistaken for independent forms of Algae. *Microcystis olivacea* and *M. Noltii*, as also the *Protococcus turgidus* and *P. chalybius* of Kützing, are thus now regarded as representing variable phases of this resting condition of
Euglena viridis. The existence of the contractile vesicle in this species, and its rhythmical though slow pulsations, were distinctly authenticated on repeated occasions. In various instances there appeared to be two of these organs situated close to one another near the anterior eye-like pigment-spot. In demonstration of the unreliability of the characters afforded by the last-named structure, Dujardin figures an example in which no less than three of these coloured bodies are present, while instances not unfrequently occur in which it is altogether absent.

Stein, in his recently published work,* has given very copious illustrations of this cosmopolitan species. From them are here reproduced his delineations of a mode of reproduction that has not been previously recorded. This, as shown at Figs. 39-41 of Pl. XX., is brought about by the abnormal growth and enlargement of the endoplast, which next breaks up into innumerable spore-like bodies that are finally liberated during the life of the animalcule as minute monadiform germs. A similar process of reproduction is likewise attributed by this same authority to the genus Trachelomonas. Encysted conditions resulting in the subdivision of the entire body-mass into sporular bodies, as delineated by Stein, are reproduced at Figs. 44-48, while simple fission, as it occurs in the temporarily encysted state, is represented at Fig. 43. Fission during the motile life of this animalcule takes place in a longitudinal direction.

An interesting local variety of Euglena viridis has been recently described by Mr. M. H. Robson, of Newcastle-upon-Tyne, in 'Science Gossip' for October 1879, in which the distal extremity of the flagellum presents an inflated knob-like aspect, as shown at Pl. XX. Fig. 29. Possibly such modification of this important organ represents a phase preliminary to its entire withdrawal, and antecedent to the entrance of the animalcule upon the encysted or resting state.

Euglena spirogyra, Ehr. Pl. XX. Figs. 27 and 28.

Body elongate, subcylindrical, seven or eight times as long as broad when extended; slightly truncate anteriorly, the posterior extremity produced as a transparent, ensiform, tail-like prolongation; cuticular surface ornamented with even closely approximated oblique rows of minute bead-like elevations; colour bright green, yellow, or brown; endoplasm usually containing two large ovate or elliptical amylaceous bodies, between which the ovate or subspheroideal endoplast is located; contractile vesicle situated at the anterior extremity immediately behind the scarlet eye-like pigment-spot. Length 1-240" to 1-120". HAB.—Fresh water, solitary.

According to Mr. Carter, the obliquely striate aspect of this and other species of Euglena is occasioned by the presence beneath the cuticle of a layer of pointed sigmoid fibrillae. The examination of numerous living examples of this type by the present author, with the aid of a magnifying power of 800 diameters, has, however, failed to reveal any such complex structure, though, on the other hand, the entire surface of the cuticle was shown to be traversed by oblique rows of closely approximated bead-like prominences; the peripheral margin of the body presented at the same time a finely crenulate aspect, demonstrating that the bead-like appearance was a structural reality, and not a mere optical appearance. A similar beaded pattern of the cuticular layer, though of a more open character, is furthermore characteristic of the figures of this species as given by Stein. In addition to the central nucleus or endoplast, two large obliquely disposed elliptical or subcylindrical amylaceous corpuscles, situated, the one a little in front of, and the other shortly behind, the centre of the body, as shown at Pl. XX. Fig. 27 a a, were usually observed. The contractile vesicle, as in E. viridis, is located immediately to the rear of the eye-like pigment spot.

* 'Infusionsthiere,' Abth. iii., 1878.
Euglena oxyuris, Schmarda. Pl. XX. Fig. 26.

Body elongate, subcylindrical, or ligulate, eight or nine times as long as broad when extended, often spirally contorted, terminating posteriorly in a long, slightly curved, spur-like, caudal prolongation; cuticular surface obliquely striate; amylaceous corpuscles cylindrical or elliptical, often very numerous; colour green. Length 1–130". HAB.—Fresh water.

The simple oblique striation of the cuticular surface, and less conspicuous development of the caudal spine, serve to distinguish this type from *E. spiragyr*. The figure here given of the species, reproduced from Stein's drawings, represents an animalcule in its more abnormal contorted condition.

Euglena deses, Ehr. Pl. XX. Figs. 52 and 53.

Body elongate, vermicular, cylindrical, fifteen to twenty times as long as broad, acutely pointed posteriorly when extended, but capable of assuming the most protean contours; cuticular surface smooth; colour green; amylaceous corpuscles acicular. Length 1–760" to 1–240".

HAB.—Pond water, among *Lemnæ*.

The figures here given are reproduced from Stein's recently published volume; that represented at Fig. 53 is described in the index as a young non-flagelliferous example, whose locomotion is effected by peristaltic movements of the body. According to Ehrenberg, this species never swims, but confines its motions to sluggish creeping and twisting.

Euglena acus, Ehr. Pl. XX. Figs. 24 and 25.

Body very slender and elongate, from seven or eight to ten or twelve times as long as broad, tapering towards both extremities, the anterior end abruptly truncate, the posterior one acuminately pointed; cuticular surface smooth; colour bright green; a red eye-like pigment-spot usually developed; contractile vesicle conspicuous, anteriorly situated; amylaceous corpuscles numerous, elongate rectangular. Length 1–570" to 1–110".

HAB.—Fresh and brackish water.

Quite recently, November 1880, the author has received examples of this species from the neighbourhood of Birmingham through Mr. Thomas Bolton. The specimens thus examined yielded an average length of 1–150", and were remarkable for the fact that, excepting for the anteriorly developed eye-like pigment-spot, their body-substance was perfectly transparent—a circumstance attributable probably to their having been for a long while deprived of their ordinary food-material. All the examples were exceedingly attenuate, their greatest central breadth usually scarcely exceeding that of the truncate anterior border. Their deportment in the water, unlike that of most representatives of the genus *Euglena*, was remarkably stiff. On rare occasions only were they observed to flex their bodies to the extent represented at Pl. XX. Fig. 25, while in no instances did they exhibit protean contractions and expansions as attested to in other of Stein's recent delineations. Such metamorphic properties are apparently, in accordance with the index to his figures, manifested chiefly by the older zooids. A number of examples were observed with their more attenuate posterior extremities affixed to the glass slide or accompanying organic debris, the movements of their flagella under such conditions causing their stiff acicular bodies to revolve in circles as though on a pivot. Not unfrequently a number of zooids becoming attached in this manner close to each
other, recalled to mind the group of *Leptomonas Bütschlii* represented at Pl. XIII. Fig. 25. In all the examples a greater or less number of rectangular attenuate amyloaceous corpuscles were clearly discerned.

Euglena rostrata, Ehr.

Body elongate, conical, tapering posteriorly, and terminating in a short tail-like process, the anterior extremity bent in a beak-like manner; colour green. Length 1–500". HAB.—Pond water.

Euglena geniculata, Duj.

Body elongate, subcylindrical, more or less even throughout, flexible, but slightly contractile, with an obliquely directed tail-like prolongation; cuticular surface smooth, colour green; red pigment-spot conspicuous. Length 1–200" to 1–170". HAB.—Pond and river water.

This species may be distinguished from *E. spiragyna*, which it most nearly approaches, by the smooth surface of the cuticle and the obliquely directed caudal termination.

Euglena fusiformis, Carter. Pl. XX. Fig. 58.

Body shortly fusiform, about one and a half times as long as broad, obtusely pointed at each extremity, the anterior one faintly bilabiate; no posterior tail-like prolongation; colour rich green; endoplasms central, situated between two refractive, nucleated, cell-like structures, which extend round the body equatorially; contractile vesicle and eye-like pigment-spots anteriorly located; parenchyma a rich green colour; motion rotatory and oscillating. Length 1–700".

HAB.—Fresh-water tanks, Bombay.

This species should probably be included in the genus *Amblyophis*. The *Euglena zonalis* of Carter, somewhat resembling it, is referred by Stein to the genus *Chloropeltis*.

Euglena agilis, Carter. Pl. XX. Fig. 64.

Body somewhat flask-shaped, inflated and widest posteriorly, attenuate anteriorly; a short, blunt, caudal prolongation sometimes present, but not essential; multiplying in its active condition by longitudinal and transverse fission, and in its passive or encysted one by crucial or by linear segmentation; colour green; movements very active. Length 1–600".

HAB.—Brackish water, Bombay.

This species, described by Mr. H. J. Carter in his *Notes on the Fresh-water Infusoria of the Island of Bombay*, is remarkable for its occasional linear mode of segmentation, briefly referred to in the foregoing diagnosis, the cyst-like envelope that encloses the segmented fragments being so transformed, Pl. XX. Fig. 64, as to assume an elongate subcylindrical contour. The germs, four in number, produced by this fissive process are each provided with a red eye-like pigment. A somewhat parallel linear mode of segmentation of the encysted animalcules has been reported by Claparède and Lachmann of the Cilio-Flagellate genus *Peridinium*, and are represented at Pl. XXV. Figs. 49 and 50.

Euglena tuba, Carter. Pl. XX. Figs. 54 and 55.

Body fusiform, subcylindrical, fish-shaped; obtuse and bilabiate anteriorly, terminating posteriorly in a short, pointed, tail-like prolongation; eye-like pigment-spot and contractile vesicle anteriorly situated; colour green. Length 1–300'. HAB.—Fresh water, Bombay: social.

Although this animalcule in its normal free-swimming condition presents no important distinction from Euglena viridis, it exhibits in its quiescent or encysted state a highly characteristic deviation. In this condition, according to its discoverer, the animalcules produce by exudation, as shown at Pl. XX. Fig. 55, a common reticulate, transparent, gelatinous basis, within the tubular ramifications of which they secrete individually a flask-shaped cyst or lorica, having a round inflated basal portion and a long tubular neck, the apical extremity of which is dilated like the mouth of a trumpet. The relationship between the free-swimming animalcules and these flask-shaped encystments cannot be said to be definitely determined. Although not mentioned in the original description of this form,* Mr. Carter has personally informed the author that the motile and encysted conditions were not observed in direct connection with one another, but that the tank from which they were taken, while found on one occasion to yield the free-swimming Euglena in abundance, produced in the place of these, when visited a few days later, a complete surface-stratum of the encysted structures immersed in their gelatinous network. The contour of these cysts, with their elongate necks and everted apertures, is so distinct from what is met with among the members of the ordinary Euglenidae, but at the same time corresponds so remarkably with that of the flask-shaped loriæ of the collared monad Salpingoxea amphiroidium and its allies, that the author is half inclined to suspect that a further investigation may elicit that this presumed encysted state of Euglena tuba is in no way connected with the free-swimming animalcules observed by Mr. Carter, but represents the quiescent condition of an as yet undescribed type of the Choano-Flagellate order. Should these premises prove correct, this organism will constitute a new generic type of the group indicated, corresponding closely with the mucous inhabiting Phalansterium, but representing in itself a most interesting departure in the direction of the sponges.

Euglena—Supplementary.

The Euglena ovum of Ehrenberg is now referred by Stein to the genus Chloropeltis, and the E. pyrum and longicauda of the same authority to that of Phacus. The Euglena mucronata of Perty, with its pointed tail and finely striped cuticle, is scarcely to be distinguished from E. spirogyra, while the E. obscura of Dujardin would seem to represent a variety only of E. viridis. De Fromentel has introduced into his work,† as new species of Euglena, several forms, all of which, however, might be referred to E. viridis, and differ from each other only in minor points of contour and coloration. The reproduction of these names with their diagnoses would serve only to further burden and embarrass the synonymy of the genus.

Genus II. AMBLYOPHIS, Ehrenberg.

Animalcules uniflagellate, free-swimming, elongate, flexible and changeable in form, rounded posteriorly, never exhibiting a tail-like prolongation of this region; endoplasm coloured green; an anterior eye-like pigment-spot usually present; the front margin apparently bilabiate, indicating the presence of an oral aperture resembling that of Euglena, this sometimes followed by a distinct pharyngeal tract.

† 'Etudes sur les Microzoaires,' Paris, 1876.
ORDER FLAGELLATA-EUSTOMATA.

In accordance with the views of Perty and other writers, the type of this genus represents merely a tail-less variety of *Euglena viridis*; its generic and specific distinctness is, however, maintained by Stein.

Amblyophis viridis, Ehr. Pl. XX. Fig. 63.

Body elongate, subcylindrical or compressed, rounded posteriorly, highly flexible, eight or ten times as long as broad when extended; the anterior margin obliquely truncate, transparent, apparently bilabiate, perforated by the oral aperture and succeeding tubular pharyngeal tract, the remaining endoplasm coloured bright green; a red eye-like pigment-spot usually present; endoplasm central, subspherical, several rod-like amylaceous corpuscles generally developed. Length 1–210″ to 1–140″.

HAB.—Pond and stagnant water, in company with *Euglena viridis*.

Amblyophys aegyptiaca, Schmarda.

Body elongate, rounded and widest posteriorly when extended, oval or spherical when contracted; flagellum equaling the body in length; eye-like pigment-spot conspicuous; colour dull green. Length, 1–480″ to 1–360″. HAB.—Fresh water, Egypt. (Schmarda.)*

Genus III. PHACUS, Dujardin.

Animalcules free-swimming, persistent in form, mostly compressed and leaf-like, terminating posteriorly in a sharp-pointed tail-like prolongation; oral aperture terminal, not projecting, followed by a distinct tubular pharynx, giving origin to a single long, vibratile flagellum; cuticular surface indurated; endoplasm coloured green, usually enclosing anteriorly an eye-like pigment-spot; contractile vesicle large, subspheroidal, situated close to the eye-like pigment-spot; endoplasm conspicuous, frequently modified as in *Euglena*, and forming by subdivision one or more large oval sporosacs. Inhabiting fresh water.

The several forms referred to this genus by Dujardin were originally described by Ehrenberg as species of *Euglena*, from which they differ essentially in their persistent form and in the more or less indurated consistence of their cuticular layer, which often remains as an empty shell after the dissolution of the enclosed contents.

Phacus pleuronectes, Müll. sp. Pl. XXI. Figs. 2–5.

Body obovate, compressed, leaf-like, one and a half times as long as broad, caudal prolongation about one-quarter the length of the body, directed obliquely towards the dorsal aspect; cuticular surface smooth, or presenting a faintly striate appearance only in its empty state; endoplasm bright green, often enclosing a large, central, spheroidal, amylaceous corpuscle; endoplasm spherical, posteriorly located; contractile vesicle contiguous to the eye-like pigment-spot, frequently exhibiting irregularly developed lateral lacunæ. Length 1–1200″ to 1–480″.

HAB.—Stagnant water.

This species was originally described by O. F. Müller under the title of *Cercaria pleuronectes*, it was transferred to that of *Euglena* by Ehrenberg, and to the present one of *Phacus* by Dujardin. Examples figured in Stein’s recently published volume are represented as containing three or four large ovate sporosacs, his “Keimsäcken,” or the so-called “glaire-cells” of Mr. H. J. Carter, each of these enclosing an endoplastule in an apparently unaltered state.

Phacus triqueter, Ehr. sp. Pl. XXI. Fig. 1.

Body ovate, compressed, leaf-like, having a raised keel-like elevation produced down the centre of the right-hand side, presenting in transverse section a triquetrous contour; caudal prolongation one-fourth or one-third the length of the body, acuminately pointed, directed obliquely towards the dorsal aspect; cuticular surface finely but distinctly striate longitudinally. Length 1–580". HAB.—Fresh water, amongst *Lemma*.

Identical with the *Euglena triqueter* of Ehrenberg.

Phacus pyrum, Ehr. sp. Pl. XXI. Fig. 10.

Body subfusiform or pyriform, about twice as long as broad, continued posteriorly as a straight acuminate tail-like prolongation which equals or slightly exceeds in length one-half of the preceding body portion; cuticular surface coarsely and obliquely sulcate. Length 1–1200" to 1–864".

HAB.—Pond water.

First figured and described by Ehrenberg under the title of *Euglena pyrum*.

Phacus longicaudus, Ehr. sp. Pl. XXI. Figs. 6 and 7.

Body ovate, compressed and leaf-like, often contorted or twisted upon its axis, from one and a quarter to twice as long as broad; produced posteriorly as an acuminate, mostly straight, but sometimes irregularly curved caudal prolongation, which nearly equals the body in length; cuticular surface finely striate longitudinally. Length 1–480" to 1–120".

HAB.—Fresh water.

As explained by Stein in his index to the figures given of this species,* it is enabled to change from the more normal flattened form to the screw-like or spirally twisted contour, though in consequence of the comparatively hardened consistence of the cuticle the process is very slow and gradual. In its power to alter in any way its external configuration, this type differs essentially from the preceding species, and may be said in consequence to occupy an intermediate position between the typical members of the two genera *Euglena* and *Phacus*. The animalcule was originally referred by Ehrenberg to the first-named genus.

Genus IV. Chloropeeltis, Stein.

Animalcules free-swimming, persistent in shape, more or less ovate, usually compressed, terminating posteriorly in an acuminate tail-like prolongation; oral aperture terminal, situated at the extremity of a short, conical, snout-like prolongation, giving origin to a single, long, vibratile

* 'Infusionsthiere,' Abth. iii., 1878.
flagellum, succeeded posteriorly by a slender pharyngeal passage; endoplasm coloured green, generally enclosing an anterior eye-like pigment-spot; contractile vesicle and endoplasm conspicuous. Inhabiting fresh water.

So far as it is possible to determine from the figures, with their accompanying indices, given by Stein,* the members of this genus are to be distinguished from those of Phacus by the presence only of the conical anterior prolongation which is perforated at its apex by the oral aperture. In all other respects the two appear to essentially agree.

Chloropeltis hispidula, Eichwald sp. PL XXI. Figs. 8 and 9.

Body broadly ovate, compressed, nearly as broad as long; caudal prolongation straight or slightly curved, equaling one-third of the length of the body; cuticular surface longitudinally ribbed, each rib thickly hispid throughout; an anterior eye-like pigment-spot usually developed; the contractile vesicle situated close to the termination of the pharyngeal passage, and apparently communicating with it; endoplasm ovate, posteriorly located. Length 1–500". **Hab.**—Fresh water.

The general contour of the body of this species coincides remarkably with the flattened and longitudinally ribbed fruit of various Umbelliferous plants, and more especially perhaps with that of the common parsnep, Pastinaca; it was originally described by Eichwald † as a species of Euglena. As figured in Stein's recent work, the number of longitudinal hispid ribs is shown to vary considerably in different individuals. In some there are only half-a-dozen upon each flattened side, while in others there may be as many as or more than twice that number.

Chloropeltis ovum, Ehr. sp. PL XXI. Figs. 11–13.

Body somewhat variable in form, mostly symmetrically elliptical and cylindrical, but sometimes subspheroidal or subfusiform; caudal prolongation short, acuminate; cuticular surface usually finely striate in an oblique but more exceptionally in a longitudinal direction; anterior conical projection conspicuously developed; endoplasm often enclosing two large or four smaller, circular, bilaterally corresponding, amylaceous corpuscles. Length 1–1500" to 1–640". **Hab.**—Fresh water.

This species was first described by Ehrenberg under the title of Euglena ovum. Stein proposes to identify the more attenuate, fusiform variety with the Euglena zonalis of Mr. Carter.

Genus V. Tracheomonas, Ehrenberg.

Animalcules monoflagellate, plastic and changeable in form, enclosed within a free-floating, ovate or spheroidal, indurated sheath or lorica, the anterior extremity of the lorica perforated by a minute aperture, through which in its normal condition the single flagellum only is protruded; oral aperture terminal, followed by a distinct pharyngeal passage endoplasm coloured green, with usually a red pigment-spot at the anterior extremity; contractile vesicle single, spherical, located near the anterior pigment-spot. Mostly inhabiting fresh water.

* 'Infusiothiere,' Abth. iii., 1878. † 'Infusoria Russlands,' 1847.
It has quite recently been shown by Stein * that the animalcules of this genus correspond essentially with those of Euglena, and from the representatives of which, indeed, they are distinguished only by their possession of a variously shaped indurated lorica. In accordance with the more recent researches of this authority, the three Ehrenbergian genera, Lagenella, Chatotyphla, and Chatoglena must also be merged with Trachelomonas, these several forms exhibiting merely slight modifications in the contour of the loricae that possess simply a specific value. As first described by Ehrenberg, the lorica, in both Chatotyphla and Chatoglena, is reported to be siliceous, but is evidently, as in the more normal Trachelomonads, simply corneous, but at the same time of an exceedingly brittle and almost shell-like consistence. Lagenella was separated by Ehrenberg from Trachelomonas with reference merely to the neck-like prolongation of the minute terminal aperture, but which may be variously developed or even almost entirely suppressed in individuals of the same species. While under ordinary circumstances the bodies of the animalcules of this genus are entirely enclosed within their ovate or spheroidal loricae, their lash-like flagella only protruding, it was originally observed by Perty, and more recently by Stein, that under certain conditions they contrive to squeeze through the minute anterior aperture, the extruded body under such circumstances presenting the aspect of a normal Euglena. This feat, comparing the large size of the animalcule’s body with the minute diameter of the orifice of the lorica, appears, as remarked by Stein, to be as difficult of achievement as the passage of the proverbial camel through the eye of a needle. The various phases of this process as delineated by him, and reproduced at Pl. XXI. Figs. 15 and 22, serve to demonstrate the almost ameboid plasticity of the endoplasm and overlying cuticle. In many species the lorica is remarkable for its red or crimson hue, this tint, however, being conspicuous only as concentrated at the periphery, where it appears as a brilliantly coloured ring or band around the bright green endoplasm of the enclosed animalcule. Multiplication through the liberation from the parent body of a multitude of minute monoflagellate germs has been observed by Stein in several species of the genus.

Trachelomonas volvocina, Ehr. Pl. XXI. Figs. 14–16.

Lorica spheroidal, entirely smooth, aperture usually level with the adjacent wall but sometimes produced so as to form a minute cylindrical, projecting neck; periphery presenting the aspect of an encircling crimson ring. Length 1–1000” to 1–860”.

HAB.—Fresh water, amongst Converve.

In one example of this species as figured by Stein, the tubular neck is produced into the interior cavity of the lorica, which in consequence resembles in contour the shell of the Foraminiferous genus Entosolenia; reference to this abnormal form will no doubt appear with the forthcoming descriptive text. In other figures, here reproduced, the egress of the animalcule through the minute aperture of the lorica and the liberation from the body of the parent of a swarm of monociliated germs are depicted.

Trachelomonas rugulosa, Stein. Pl. XXI. Fig. 17.

Lorica spheroidal, resembling that of T. volvocina, excepting that its entire external surface is finely wrinkled; anterior aperture plane or slightly prominent. Length 1–1080”. HAB.—Fresh water.

Trachelomonas lagenella, Stein. Pl. XXI. Figs. 18 and 19.

Lorica colourless, oval or elliptical, nearly one and a half times as long as broad, the anterior and posterior extremities even, sometimes

* 'Infusionsthiere,' Abth. iii., 1878.
subquadrate, its surface entirely smooth; the anterior aperture produced as a short, tubular, obliquely projecting neck. Length 1-1200" to 1-750".

HAB.—Fresh water.

This species is identified by Stein with the Lagenella euchlora of Ehrenberg, and should apparently retain the specific title conferred upon it by the last-named authority. One example, Pl. XX. Fig. 19, as represented by Stein, has assumed a quiescent condition within its lorica, and become divided into two equal spheroidal moieties.

Trachelomonas cylindrica, Ehr. Pl. XXI. Fig. 20.

Lorica elongate, cylindrical, about three times as long as broad, entirely smooth, anterior aperture plane or produced as a short tubular neck; colour crimson or purple. Length 1-1000". Hab.—Fresh water.

The *Trachelomonas nigricans* of Ehrenberg, coinciding in general form, but having the lorica coloured a deep reddish or blackish brown, is regarded by Perty as an older condition only of the present species.

Trachelomonas hispida, Pty. sp. Pl. XXI. Figs. 21-23.

Lorica evenly ovate or elliptical, from a little over one and a half to nearly two and a half times as long as broad, the entire surface finely and evenly hispid; anterior aperture plane or forming a short cylindrical neck; walls of peripheral border scarlet or crimson. Length 1-1150" to 1-600".

HAB.—Fresh water.

This species is identified by Stein with the Chaetoglena volvocina of Ehrenberg and with the *Chonemona hispida* and *C. Schrankii* of Max Perty. It is necessary to remark, however, that the enclosed animalcule is represented by Perty as having two long, equal-sized flagella, as in *Eutreptia*, instead of a single one as figured by the first-named writer. The lorica of this type is susceptible of a very considerable range of variation, it, in addition to the two contours mentioned in the foregoing diagnosis, being sometimes supplemented, as in *T. caudata* and *T. acuminata*, with a short, conical, tail-like prolongation. The empty shell has been observed by both Stein and Perty to be finely striate obliquely in cross directions, the intersection of these lines communicating to the entire structure a reticulate appearance.

Trachelomonas eurystoma, Stein. Pl. XXI. Fig. 27.

Lorica ovate, bluntly pointed posteriorly, about one and a half times as long as broad, surface smooth, anterior aperture comparatively wide, slightly projecting, its edges crenulate. Length 1-812".

HAB.—Fresh water.

Trachelomonas armata, Ehr. sp. Pl. XXI. Fig. 25.

Lorica broadly ovate or elliptical, about one and a quarter times as long as wide; ten or twelve long claw-like spines projecting from the posterior margin, and a number of short conical ones sometimes disposed around the short tubular anterior aperture; the intervening area smooth; the free edge of the short neck-like projection sometimes finely toothed; colour brown. Length, excluding the posterior spines, 1-650".

HAB.—Fresh water.
This animalcule is identified by Stein with both the *Chatotyphla armata* and *C. aspera* of Ehrenberg. As in many other species of the genus, the lorica presents a wide range of individual variation, this being manifested most prominently in connection with the more or less extensive development of the spinous processes.

Trachelomonas caudata, Ehr. sp. Pl. XXI. Fig. 24.

Lorica elongate-ovate or flask-shaped, two or three times as long as broad, tapering posteriorly and further produced into an acuminate tail-like process, the anterior aperture developed in a neck-like manner, its free margin everted and deeply toothed; the entire surface, exclusive of the anterior and posterior prolongations, finely and densely hispid. Length 1-864" to 1-480". Hab.—Fresh water.

This species is identified by Stein with the *Chatoglena caudata* of C. G. Ehrenberg.

Trachelomonas bulla, Stein.

Lorica elongate-ovate, from two and a half to three times as long as broad, produced anteriorly into a conical, neck-like prolongation; the surface entirely smooth or beset with minute hispid points which are both finer and less thickly distributed than in *T. hispida* and *T. caudata*. Length 1-500" to 1-430". Hab.—Fresh water.

Trachelomonas acuminata, Schm. sp. Pl. XXI. Fig. 26.

Lorica obovate or flask-shaped, inflated and widest posteriorly, supplemented in that region by an acuminate and somewhat irregular tail-like process, the anterior extremity produced into a cylindrical, moderately large, obliquely-truncate, neck-like prominence, the surface entirely smooth throughout. Length 1-500". Hab.—Fresh water.

This animalcule was originally described by Schmarda under the title of *Lagenella acuminata*, and is refigured and referred to the present generic group by Stein.

Doubtful Species.

Pritchard’s ‘Infusoria’ includes the briefest possible diagnosis of two additional species of *Trachelomonas* as follows, and without any reference to their original describers:—

"*T. areolata*, globose, surface areolated.

"*T. aspera*, similar to the preceding, but its surface covered with rough points."

Genus VI. Raphidomonas, Stein.

Animalcules free-swimming, monoflagellate, moderately contractile; oral aperture terminal, conducting to a well-defined pharyngeal chamber; cuticular layer enclosing a large number of variously distributed trichocysts; contractile vesicle and endoplast conspicuous; colour green.

This genus is founded by Stein on the *Monas semen* of Ehrenberg; excepting for the presence of numerous and variously distributed trichocysts it closely resembles *Celomonas*.
Raphidomonas semen, Ehr. sp. Pl. XX. Figs. 60–62.

Body elongate-ovate, flexible and somewhat variable in form, usually rounded and widest anteriorly, tapering and slightly attenuate posteriorly, from two and a half to three times as long as broad; flagellum scarcely equaling the body in length, issuing from the anterior oral fossa; pharyngeal chamber subtriangular or lunate, transversely placed; contractile vesicle single, anteriorly situated; endoplast large, ovate, subcentral; endoplasm green; trichocysts most abundant along the anterior margin. Length 1–575" to 1–400".

HAB.—Marsh water, among decaying Sphagnum; movements sluggish, vacillating.

As originally described by Ehrenberg under the title of Monas (?) semen, this species is distinguished by the presence of a peculiar triquetrous structure beneath the frontal border, by the enclosure within its substance of numerous minute spicular bodies, and by its apparent possession of fine vibratile cilia. As now shown by Stein* the first-named structure represents a capacious subtriangular pharyngeal excavation, which communicates with the oral aperture and is homologous with the still more conspicuous spheroidal one possessed by Celomonas grandis; the presumed cilia he has further demonstrated to coincide with the anteriorly placed trichocysts in their exerted state, as shown at Pl. XX. Fig. 61. In their more normal retracted condition these trichocysts—coinciding with Ehrenberg's spicular bodies—present the aspect of simple minute bacillar bodies which underlie, as an even and closely set row, the entire frontal border, and are found distributed irregularly and in various degrees of abundance throughout the remaining body area. Although not taking the form of evenly distributed lines in the last-named region, they appear from Stein's figures to maintain mostly a uniform longitudinal disposition. Mereschkowskii's genus Merotricha, see p. 249, would appear to represent the only other Flagellate animalcule to which the existence of trichocysts has been accurately demonstrated, though, in accordance with the recent investigations of O. Bütschli, there is reason for believing that analogous structures are possessed also by Chilomonas paramenium. In neither instance, however, have they been shown to possess a distinct capacity of extension and retraction, as is recorded by Stein of Raphidomonas.

Genus VII. COELOMONAS, Stein.

Animalcules free-swimming, monoflagellate, highly contractile and variable in form, having a distinct anterior oral aperture, which conducts to a capacious subspheroidal pharyngeal chamber; endoplasm and contractile vesicle conspicuous, no trichocysts. Inhabiting fresh water.

This genus is founded by Stein† on the Monas grandis of Ehrenberg, its distinctive feature being the capacious pharyngeal chamber, usually filled with a fluid substance, that follows upon the well-developed oral cleft. While a somewhat similar pharyngeal excavation is developed in both Raphidomonas and Microglena, it does not in either of these latter types attain the proportions characteristic of the present genus. More correctly, perhaps, this so-called "body-cavity," or "Leibeshöhle" as it is designated by Stein in his index to the various figures given, may be compared with the vestibular fossa of Vorticella and other Peritricha, the resemblance in contour between these structures being more particularly prominent in the type previously described under the title of Raphidomonas semen.

* 'Infusionsthiere,' Abth. iii., 1878.
† Ibid.
Coelomonas grandis, Ehr. sp. Pl. XX. Fig. 59.

Body highly contractile and variable in form, regularly or irregularly elongate-ovate or subspheroidal, pharyngeal dilatation occupying nearly the entire anterior half of the body; flagellum short, not equaling the body in length; cuticular layer enclosing innumerable golden-green chlorophyll-granules; contractile vesicle single, anteriorly situated; endoplasm spheroidal, subcentral. Length 1-430\".

HAB.—Marsh water; movements sluggish.

This species, as previously intimated, is identical with the Monas grandis of Ehrenberg.

Genus VIII. ASCOGLENA, Stein.

Animalcules solitary, monoflagellate, highly elastic and changeable in shape, enclosed within a sessile tubular or flask-shaped lorica, to the bottom of which they adhere by the posterior extremity; endoplasm coloured green, enclosing an anterior eye-like pigment-spot; oral aperture and contractile vesicle as in Euglena. Inhabiting fresh water.

The representatives of this genus may be described as Euglena which secrete and inhabit sessilely attached loricæ and hold in their family group a position corresponding with that occupied by Vaginicola as compared with Vorticella among the Vorticellidae, or that of Salpingeca with relation to Monosiga among the Choanoflagellata.

Ascoglena vaginicola, Stein. Pl. XXI. Figs. 28 and 29.

Lorica erect, tubular, subcylindrical, rounded and widest posteriorly, tapering gradually towards the anterior aperture, about three times as long as broad, its consistence finely granular with a somewhat more transparent anterior border; animalcule clearly visible through the walls of the lorica, Euglena-like and highly contractile, its distal extremity when extended reaching to the anterior aperture; dividing within the lorica by transverse fission. Height of lorica 1-640\". HAB.—Fresh water.

Genus IX. COLACIUM, Ehrenberg.

Animalcules monoflagellate, exhibiting two distinct phases of existence, the one free-swimming and the other sedentary: in the motile stage solitary, highly elastic and changeable in form, and in all essential details corresponding with simple free-swimming Euglena; in the sedentary stage affixed socially, mouth downwards, to a simple stalk or to the extremities of a more or less elevated branching pedicle or zoodendrium, which is produced by the repeated longitudinal fission of a single primary zooid; endoplasm coloured green, enclosing an anterior eye-like pigment-spot; oral system, endoplasm, and contractile vesicle, as in Euglena. Inhabiting fresh water.

The several species referred to the genus Colacium, as originally instituted by Ehrenberg, are not represented as possessing any distinct flagelliform appendage, though the presence of one or more such organs was suspected by him through the
observation of almost constantly recurring currents in the surrounding water. The practical demonstration of the possession by these animalcules of a single terminal flagellum, of their enjoyment of a solitary free-swimming and social colony-building existence, and of their entire structural correspondence during the former phase with the zooids of the genus *Euglena*, was arrived at by the author in the winter of the year 1877, in connection with the *Colacium stentorium*, in part, of Ehrenberg, and the new species here described under the title of *C. Steinitii*. The observations then made are substantially confirmed by Stein's figures and accompanying indices, illustrating other allied species, published in November 1878. Certain points observed by the author have, however, apparently escaped the attention of Professor Stein, and are now recorded for the first time. Chief among these it must be mentioned that in no instance does that authority indicate the possession of a flagellum by any members of the sedentary colony-stocks, the animalcules, according to his figures, after their first attachment losing this organ, and their offspring produced by repeated longitudinal fission of the primarily attached zooid, which remains affixed to the extremities of the branching pedicle, not developing any flagellate appendage. As shown, however, in the author's account and illustrations of the species quoted, the flagella are developed, though difficult to detect, by both the motile and sedentary zooids, disappearing through absorption as a preliminary only to the act of encystment and sporular reproduction.

The two cycles of existence manifested in the representatives of this genus find, with the exception of *Chlorarangium*, no parallel among the entire class of the Infusoria. As in both the sedentary and motile conditions the reproductive faculties would appear to be represented—the power of multiplying by ordinary fission being retained by the natatory zooids—this generic group may be further cited as undoubtedly yielding a novel instance of the interesting phenomenon of the alternation of generation. Whether genetic reproduction, accomplished by the conjugation of two independent zooids, obtains during the sedentary or natatory phases, is an interesting problem that yet awaits solution. The remarkable fixation of the locomotive zooids of *Colacium* by their oral end, and development into stalked sedentary organisms, in which the characteristics of their natatory phase are almost completely masked, will scarcely fail to recall to mind the singular and somewhat parallel metamorphoses exhibited by the Cirripede Crustacea.

Colacium arbuscula, Stein. Pl. XXI. Fig. 33.

Sedentary zooids elongate-ovate, about twice as long as broad when extended, shortly pyriform or subglobose when contracted, grouped at about the same level at the extremities of a slender, erect, smooth and even, dichotomously branching pedicle, the basal stem of which equals or considerably exceeds the height of an extended zooid, the secondary and succeeding ramifications being shorter; parenchyma enclosing comparatively few largish ovate chlorophyll-corpuscles. Length of bodies 1–1000" to 1–800"; height of adult colonies 1–250".

Hab.—Fresh water, on Rotifera.

The examples of this species figured by Stein* are represented as attached to the Rotifer *Anurae fissa* of Mr. P. H. Gosse. No less than two adult colonies, bearing respectively six and eight zooids, and four smaller ones, are thus shown growing upon one specimen of this minute rotifer, whose movements in the water must have been much impeded by the accession of a living burden whose total bulk considerably exceeded that of its own body. No illustrations are given or references made to the free-swimming zooids of this type.

* 'Infusionsthiere,' Abth. iii., 1878.
Colacium calvum, Stein. Pl. XXI. Figs. 30-32.

Sedentary zooids elliptical or oblong, about two and a half times as long as broad, of even width throughout, scarcely rounded and almost square at the two extremities, elevated at an even altitude upon a very short, thick pedicle, the main stem and subsequent subdivisions of which do not equal a total height of one-half that of a single zooid; motile zooids highly contractile and variable in form, usually widest anteriorly; endoplasm, with the exception of a clear, cap-like, longitudinally striate, anterior area, enclosing numerous, minute, spherical chlorophyll-corpuscles, each with a central nucleus-like point; contractile vesicle large, communicating freely with the tubular pharynx; endoplasm conspicuous, situated in the median line at a distance of one-third of the length of the body from the posterior extremity. Length of sedentary zooids 1-500".

HAB.—Fresh water, mostly forming small colonies of two or four zooids only.

Colacium vesiculorum, Ehr. Pl. XXI. Figs. 34-38.

Sedentary zooids subsfusiform, about two and a half times as long as broad, tapering towards each extremity, but more attenuate posteriorly when extended, pyriform and widest anteriorly when contracted, seated at the same level at the summit of a short, slender, and often transversely wrinkled, branching pedicle, the entire height of which scarcely equals one-half of that of an extended zooid; motile zooids Euglena-like, variable in form. Chlorophyll-corpuscles of endoplasm oval, numerous and equally distributed. Length of sedentary zooids 1-800".

HAB.—Fresh water, on Cyclops and other Copepodous Crustacea; colony-stocks including from two to eight animalcules.

Colacium steinii, S. K. Pl. XXI. Figs. 39-41.

Sedentary zooids elongate-ovate, about two and a half times as long as broad when extended, globose, pyriform, or subnapiiform, with an inflated central and conically projecting anterior and posterior prolongation when contracted; pedicle branching irregularly or subdichotomously, bearing the zooids at different heights and attaining an altitude equal to two or three times that of an extended animalcule; motile zooids Euglena-like, variable in form; endoplasm enclosing numerous, evenly distributed, ovate chlorophyll-corpuscles. Length of sedentary zooids 1-900".

HAB.—Fresh water, on a species of Cyclops.

In the general contour of the extended zooids and comparative altitude of the supporting pedicle, this species corresponds considerably with C. arbusculum. It may be distinguished from it, however, by the more or less irregular instead of even dichotomous divarication of the secondary branches and by the elevation of the animalcules at diverse instead of corresponding heights. During their contracted state the napiiform contour referred to in the diagnosis is of common occurrence, but does not, from Stein's figures, appear to be assumed by either of the preceding types. While this last-named contour is the most characteristic, innumerable other
shapes are from time to time assumed, the parenchyma and cuticle being remarkably soft and plastic, and the animalcules, as observed by the author, being exceedingly restless, continually elongating or shortening their outline, and twisting to and fro upon their pedicles. As previously intimated, it was in connection with this species that the possession of flagellate appendages by the sedentary zooids was determined. On several occasions these sedentary individuals were seen to detach themselves from the branching pedicle and swim freely in the water after the manner of Euglenæ, while in other instances they were observed to absorb their flagella and form ovate encystments whose enclosed contents broke up into innumerable spore-like bodies. The rupture of these encystments and the liberation of their contents as simple non-flagellate germs were likewise witnessed. The author is inclined to believe that the Colacium stentorinum of Ehrenberg embraces two distinct forms, one with short, acuminate branches and attenuate, fusiform, biflagellate, sedentary zooids of a dull green hue, corresponding with the Chlorangium stentorinum of Stein, and another with bluntly ovate, bright green, uniflagellate animalcules forming variously shaped bush-like growths, that corresponds probably with the present species. The examples of Colacium Steinii, as here figured and described, were found on a species of Cyclops taken from a pond near Acton in December 1877.

Supplementary Species.

An animalcule most nearly resembling Colacium calvum in external shape, but of much more minute size—the length of the sedentary zooids not exceeding the 1-1300" and that of the extended natatory ones the 1-1000"—has been recently obtained by the author attached to the carapaces and limbs of a species of Cyclops inhabiting pond-water from brickfields near Shepherd's Bush, London. In no case, however, out of the numbers so far examined, was more than a single animalcule found attached to one pedicle. The contour of these sedentary examples, while quadrate, was, moreover, much more irregular, the distal or free margin being much broader than the proximal one or that which is united to the pedicle. More usually from two to four scarlet eye-like pigment-spots were developed in place of the single one characteristic of the species previously described, while the chlorophyll-corpuscles were of much larger proportionate size, and leaving comparatively small interspaces in the exposed periphery. Pending further investigation it is proposed to provisionally distinguish this type by the title of Colacium multoculata. The possession of a flagellum by the sedentary zooids was amply demonstrated.

Fam. IV. NOCTILUCIDÆ, S. K.

Animalcules free-swimming, bounded by a distinct external membrane or cuticle, the contained endoplasm highly vacuolar, forming a variously modified protoplasmic network; oral aperture distinct, associated with a single vibratile flagellum, to which may be added a prolonged tentaculiform appendage. Habits pelagic, often phosphorescent.

Professor Haeckel * has proposed to elevate the most prominent and, up to within a comparatively recent date, only known generic form referable to the present family group, to the rank of a separate order of the Protozoa, or rather of his so-called "Protista," to be designated the Cysto-Flagellata. The affinities of the type in question, Noctiluca, with the more ordinary representatives of the Stomatode Flagellata are, however, so obvious that any such isolation of it cannot be consistently maintained. A closely identical reticulate character of the endoplasmic layer, chiefly distinctive of this form, is met with among various ciliate and flagellate Infusoria types, including such genera as Trachelius, Loxodes, and Callodictyon, while the non-essentiality of the caudiform tentaculate appendage is demonstrated by its entire absence in Hertwig's recently discovered and closely allied genus Leptotiscus.

* 'Natürliche Schöpfungsgeschichte,' Berlin, 1868.
GENUS NOCTILUCA.

GENUS I. NOCTILUCA, Surray.

Animalcules free-swimming, subspherical, consisting of a smooth, hyaline investing pellicle and an internal protoplasmic mass, which radiating in every direction from the centre of the body, spreads itself in a thin peripheral layer over the inner surface of the bounding membrane; the oral aperture situated at the base of a subcentral infundibulate pit-like depression, the single slender vibratile flagellum originating from within its cavity; a supplementary long, flexible, and elastic tentaculiform appendage arising close to and overhanging the oral fossa. Endoplasm conspicuous; no contractile vesicle as yet observed. HAB.—Salt water.

It has been suggested that the tentacle-like appendage in this generic type finds its homologue in the frequently larger trailing flagellum or gubernaculum of Anisonema and its allies, and under which circumstances the rightful position of the form would be among the Dimastigous section of the present group. Having respect, however, to the new generic group Leptodiscus, in which there is no such appendage, the author is disposed rather to regard this last-named structure as an entirely adventitious growth. Further investigation may not improbably establish a bond of affinity between Noctiluca and the correspondingly pelagic Peridiniidae, certain of which, such as Gymnodinium, are devoid of an investing cuirass, while many are notable in a like manner for their phosphorescent properties.

Noctiluca miliaris, Surray. Pl. I. Figs. 34-44.

Body hyaline, peach-shaped, somewhat compressed, with a distinct meridional groove; oral fossa situated at one extremity of the meridional groove, having on one side a hard, tooth-like, projecting ridge, close to one end of which the vibratile flagellum takes its origin; tentaculiform appendage transversely striate, its length about equal to the diameter of the body; a narrow ridge or rod-like induration of the cuticular membrane extending in a straight line from the aboral extremity of the meridional groove through about one-third of the circumference of the body, and there terminating abruptly. Endoplasm oval. Diameter 1-80" to 1-20".

HAB.—Pelagic, cosmopolitan; eminently phosphorescent.

As remarked by Professor Allman, there is perhaps no one of the phosphorescent animals as yet known to science that possesses such highly luminous properties as Noctiluca miliaris. To the presence of this animalcule in countless myriads upon the upper stratum of the water on calm summer nights is due especially that diffused form of phosphorescence that is more essentially characteristic of temperate latitudes. Under the most favourable of these conditions the waves falling upon the strand leave as they retreat a glittering carpet of scintillating points, the ears of the passing boat seem to dip as it were into molten silver, while on the high seas the waste of waters churned into foam by the revolving screw or paddles of the steam-vessel leaves in its wake a broad luminous track as far as the eye can reach. A glassful of water taken from the surface of the sea at such times immediately reveals the origin of this wonderful phenomenon; here and there will be seen floating minute, bladder-like, transparent spheres, resembling as nearly as possible small granules of boiled sago, and which exhibit on closer investigation with the microscope, the structural characters given in the foregoing diagnosis. Irritated by agitation in any shape or form they at once respond by, as it were, angry flashes of silvery greenish light, and it is to the coruscations in their aggregate condition of
millions of these minute bodies that the several phenomena above recounted are produced. One other manifestation of pelagic phosphorescence dependent upon the presence in countless numbers of this same tiny protozoon, may be suitably recorded in these pages. By those accustomed to a seafaring life, the sight on nights when the luminosity of the sea is most conspicuous, of fish following or darting away from the sides of the vessel, apparently themselves aglow with phosphoric light, and leaving behind them, in accordance with their size, a more or less conspicuous luminous path in the murky waters, is frequently recorded. It is commonly supposed that such form of luminosity is emitted by the fish themselves, but on closer investigation it will be found that this also is due to the presence of the animalcules now under discussion, and which are disturbed into a sudden display of their phosphoric properties by the passage of the fish through their midst. This light is reflected as from a mirror by the glistening scales of the larger animal, while the Noctiluca remain scintillating for some few moments in the path through which the fish has passed, thus producing the more or less conspicuous tracks of light which are left in its wake.*

The special seat of the phosphorescent properties of Noctiluca miliaris is presumed to be the peripheral protoplasmic layer lying immediately beneath the surface of the cuticle. This supposition is favoured by adding a small drop of alcohol to the water containing a living specimen while examined under the microscope. In place of the momentary flash of light emitted under ordinary disturbance, the little creature now exhibits its luminosity with the fullest intensity for several seconds. At the end of that time it commences to gradually disappear, and before becoming finally extinct with the life of the animalcule, presents the aspect of a mere luminous ring upon the dark background of the field of the microscope. This last phenomenon is pointed out by Professor Allman as indicating that the phosphoric properties are confined to the peripheral portion, the light when the annular appearance is presented having become so weak as to be appreciable only towards the edges of the projected sphere, and where necessarily a greater depth of the luminous stratum lies in the direction of vision. On the other hand, there appears to be no appreciable differentiation between the protoplasmic stratum beneath the cuticle and the central or radiating portions, and it is difficult to reconcile this fact with the presumed limitation of the phosphoric property. It would seem an open question, indeed, whether the last peripheral scintillations of the dying Noctiluca are not directly comparable with the phenomena exhibited by a burning paper in which the flame, having no longer any pabulum to support its volume, leaves upon its departure a multitude of coruscating sparks which, animated by a mysterious and irresistible centrifugal force, hurry or creep out as it were from the centre and become extinct only on reaching the periphery. If the substance of the charred paper reflected and transmitted instead of absorbed light, as is apparently the case with the smooth cuticle of Noctiluca, the last appearance presented in this instance also, presuming the paper was circular, would be that of a luminous ring.

The process of reproduction in Noctiluca has been successfully followed by Cienkowski.† Transverse fission after the manner common to almost all the Infusoria, attended by an enlargement and division of the central nucleus or endoplast, is of common occurrence. During this process the animalcule retains its normal contour or assumes a spheroidal or semi-encysted form, in which all traces of the tentacle, tooth-like process and cillum, and meridional groove entirely disappear, presenting, indeed, under such circumstances so distinct an aspect as to have been frequently and even quite recently (vide infra) mistaken for a separate organism. In connection with this spheroidal condition, a process of multiplication is recorded by Cienkowski that has not been previously observed. In this instance the central endoplast disappears and the protoplasmic contents of the cyst, collecting to one spot on its inner surface,

* A fuller reference to this special form of marine phosphorescence, as witnessed by the author in the Bay of Biscay, is contained in an article on "Phosphorescence in Fish," published in 'Nature,' vol. vii., for the year 1872.
The Genus Noctiluca

399

Four, eighteen, thirty-two, or more masses in a manner precisely

become separated by binary segmentation into at first two and then consecutively

four, sixteen, thirty-two, or more masses in a manner precisely.

The Genus Noctiluca

399
ORDER FLAGELLATA-EUSTOMATA.

described in this treatise, was completely ignored by the talented staff of the 'Challenger' expedition, its representatives indeed, when encountered, as in the present instance, being unrecognized and referred to the vegetable series. It is to be hoped that the opportunities for acquiring a further knowledge of the morphology and distribution of the hitherto little known or altogether unchronicled pelagic Infusoria will not be neglected in the future scientific expeditions of a like kind that may be organized by this country. It may be confidently anticipated that in this field alone new and interesting forms remain to be discovered, that surpass in number and variety the by no means inconsiderable series that are already known to science.

Genus II. LEPTODISCUS, Hertwig.

Animalcules free-swimming, more or less flattened or discoidal, having, as in Noctiluca, a hyaline investing pellicle and an internal, radiating or reticulate, protoplasmic layer; oral aperture situated at the base of a tubular pit-like excavation; a long, lash-like, vibratile flagellum issuing from the entrance to the adoral fossa; no supplementary tentaculate appendage; endoplasm conspicuous; no contractile vesicle as yet detected.

HAB.—Pelagic.

R. Hertwig,* the original discoverer of the single known member of this genus, is inclined to regard it as the type of a family distinct from Noctiluca. The various structural details, excepting for the absence of the transversely annulate tentaculate appendage, correspond however so closely with those of the latter type that its complete separation from it seems scarcely justified.

Body very much flattened, meniscoidal and orbicular, highly flexible, thickest in the centre and gradually tapering towards the periphery; oral fossa subcentral, opening on the convex surface, descending obliquely through the entire thickness of the body to the protoplasmic lining of the opposite bounding membrane; flagellum slender, vibratile, its length equal to less than one-fourth of the diameter of the disc, inserted close within the entrance to the oral fossa; endoplasm oval, subcentral, consisting of a larger granular and smaller transparent region; a number of minute, spherical, oil-like globules immediately underlying the upper and convex cuticular layer. Diameter of largest individual 1-4''.

HAB.—Pelagic: Messina.

The close resemblance of the adult zooids of this singular species to minute jelly-fish (Medusae) is very remarkable, their large size, as represented without the aid of magnifying power at Pl. I. Figs. 46 and 47 further supporting this analogy. Hertwig figures as the supposed young of Leptodiscus some organisms that differ altogether from the parent. These bodies, Pl. I. Figs. 52 and 53, are of more elongate outline, flattened and somewhat cushion-shaped, with a central, transversely annular constriction; there is no flagellate or other appendage, the endoplasm is central, oval, and granulate throughout, and represents the point from whence the internal protoplasmic reticulations chiefly radiate, as in the adult form. The mode of natation in these hypothetic non-adult zooids is exceedingly remarkable, being effected, according to Hertwig, by the alternate contractions of the internal protoplasmic radii on each side of the central annular constriction, this contraction in

GENUS CHLOROMONAS.

Each instance being so complete that the side affected by it presents a temporary aspect of complete collapse. This locomotive phenomenon, taken together with the very distinctive contour and structure of the organism as a whole, differs so essentially from Leptodiscus medusoides in its normal state that it is almost impossible to repress the suspicion that this more minute organism will eventually prove to belong to an independent and perfectly distinct pelagic type.

Section B.—EUSTOMATA-DIMASTIGA.

Fam. V. CHRYSOMONADIDÆ, S. K.

Animalcules bi-flagellate, rarely monoflagellate, social or solitary, free-swimming or adherent, naked, loricate, or immersed within a common mucilaginous matrix or zooyctium; endoplasm always containing two lateral, occasionally green, but more usually olive-brown or yellow, differentiated pigment-bands; one or more supplementary eye-like pigment-spots frequently present.

The considerable series of genetic types assembled in this newly proposed family group are at once recognized by the presence of the characteristic lateral pigment-bands, these elements being here held to be of such primary import as to override the fact that in the first three genera described a single flagellum only has as yet been detected. The colour-bands in question, in addition to their distinctive tint, are apparently of firmer consistence than the surrounding transparent protoplasm, and bear a very considerable resemblance to the endochrome or colouring matter of the Diatomaceae. The development of these pigment-bands, though constant among zooids of the same species, varies considerably among different generic and specific forms, being symmetrical or unsymmetrical, and produced either in whole or in part only down the lateral borders of the animalcule's body. While until recently the affinities of these animalcules were accepted as closely approximate to that of Volvox, Protococcus, and other undoubted Protophytes, the most recent researches of Stein, in combination with the independent investigations of the present author, have substantiated in many instances—as, for example, the genera Dinobryon, Uroglena, and Chrysomonas—their undoubted animal organization. So far as at present known, all the members of this family are inhabitants of fresh water.

Genus I. CHLOROMONAS, S. K.

(Greek, chloros, green; monas.)

Animalcules more or less ovate, solitary, free-swimming, persistent in shape, flagellum single, terminal; endoplasm enclosing two differentiated lateral pigment-bands, and usually an anterior eye-like pigment-spot.

This new genus is instituted for the distinction of the form identified by Stein with the Cryptoglena pigra of Ehrenberg, but which, as presently explained, differs essentially from the typical Cryptoglena in the possession of the characteristic colour-bands and of a single flagellate appendage.

Chloromonas pigra, Ehr. sp. Pl. XXII. Figs. 1 and 2.

Body ovate or conical, somewhat compressed, pointed posteriorly, the cuticular surface indurated and presenting sharpened or keel-like lateral borders; pigment-bands bright green, extending evenly on each side throughout the length of the body; eye-like pigment-spot immersed within
the substance of the anterior region of one of the lateral bands; oral aperture situated close to the flagellum, continued into a distinct though minute, tubular pharynx; contractile vesicle single, conspicuously developed, located centrally close to the termination of the pharynx; endoplast occupying the median line near the pointed posterior extremity. Length 1-3000". HAB.—Pond water; movements slow.

This species is identical with the Cryptoglena nigra of Ehrenberg and Stein, its departure from the type of the last-named genus being made manifest more especially by the two characteristic lateral colour-bands and by the possession of a single flagellum only. By the addition of a second flagellate appendage the present type would be rendered eligible for inclusion in the genus Cryptomonas, and would be scarcely distinguishable from the young of C. ovata, as shown at Pl. XXII. Fig. 18.

GENUS II. **CHRYSOMONAS,** Stein.

Animalcules free-swimming, illoricate, more or less ovate or elongate, but flexible and changeable in form; flagellum single, produced from the centre of the anterior border; oral aperture conspicuous, not followed by a distinct pharyngeal dilatation; endoplasm enclosing two lateral coloured bands and an anteriorly situated eye-like pigment-spot; contractile vesicle and endoplasm conspicuous. Inhabiting fresh water.

This genus is founded by Stein* on the Monas flavicans of Ehrenberg. Excepting for the absence of the characteristic pharyngeal excavation, it would seem to closely approach Microglena.

Chrysomonas flavicans, Ehr. sp. Pl. XXII. Figs. 8 and 9.

Body soft and plastic, variable in form, usually more or less elongate-ovate or subcylindrical, three or four times as long as broad; flagellum single, scarcely equalling the body in length; endoplasm enclosing two anteriorly produced lateral colour-bands, which do not extend to the posterior extremity, and a single eye-like pigment-spot; contractile vesicle single or double, spheroidal, and of large size, situated immediately beneath the insertion of the flagellum; endoplasm minute, spherical, subcentral. Length 1-1720" to 1-600". HAB.—Ditch water.

In the figures of this species given by Stein one example is represented as having devoured a Navicula almost equalling itself in length, and another with two incepted Chlamydomonads. Multiplication, following upon a quiescent or encysted condition as delineated by the same authority, exhibits highly interesting phenomena, one zooid forming, as seen at Pl. XXII. Fig. 9, a spheroidal granular matrix, within which it divides, by repeated longitudinal fission, into as many as sixteen units, bearing under such conditions a considerable likeness, excepting for the absence of flagella, to the characteristic spheroidal colony-stocks of Syncrypta and Uroglena.

Chrysomonas ochracea, Ehr. sp. Pl. XXII. Figs. 3-7.

Body variable in form, ovate, elongate or subglobose; endoplasm clear, ochreous yellow; colour-bands centrally located, a single eye-like pigment-

Infusionsthiere, Abth. iii., 1878.
spot usually developed; flagellum single, equalling or exceeding the length of the body; contractile vesicle single, anteriorly situated. Length 1-600" to 1-1200". HAB.—Fresh water.

This minute species is referred by Stein, with some doubt, to the Monas ochracea of Ehrenberg. Multiple fission within a comparatively large spheroidal cyst or capsule, closely corresponding with the reproductive process recorded of the type last described, as figured by the same authority, is reproduced at Pl. XXII. Figs. 5 and 7.

Genus III. Microglena, Ehrenberg.

Animalcules free-swimming, illoricate, plastic and changeable in form, usually more or less ovate or elongate; oral aperture distinct, anteriorly placed, communicating with a dilated pharyngeal cavity; flagellum single, terminal; endoplasm green or yellow, enclosing two supplementary longitudinally placed coloured bands and one or more eye-like pigment-spots; contractile vesicle and endoplasm conspicuous. Inhabiting fresh water.

Microglena punctifera, Ehr. Pl. XXII. Fig. 10.

Body somewhat variable in form, elongate-oval or obconical, widest and rounded anteriorly, tapering and bluntly pointed at the posterior extremity, about twice as long as broad; flagellum attenuate, vibratile, issuing from the oral aperture, scarcely equalling the body in length; pharyngeal cavity capacious, subspheroidal or pyriform; endoplasm yellow, the two lateral coloured bands produced through the entire length of the body; two minute red eye-like pigment-spots at the anterior extremity; contractile vesicles numerous, spheroidal, four or six in number, located around the border of the pharyngeal excavation; endoplasm ovate, subcentral. Length 1-620" to 1-500". HAB.—Fresh water.

The diagnosis of this species, and also of the genus Microglena, is here amended in accordance with the figures given by Stein in the recently issued volume of his 'Infusionsthiere.' The following form not having apparently fallen under the notice of this authority, has associated with it an imperfect description formulated only upon the figures and brief description originally given by Ehrenberg.

Microglena monadina, Ehr.

Body shortly ovate or subspheroidal, evenly rounded at each extremity; flagellum equalling the body in length; endoplasm brilliant green, enclosing a single, anteriorly situated, scarlet, eye-like pigment-spot; pharyngeal excavation capacious; endoplasm (?) band-like, subcentral. Length 1-2400" to 1-720". HAB.—Pond water; movements rotatory.

A very distinct band-like structure, apparently corresponding with the ovate endoplasm of the preceding type, is indicated by Ehrenberg in the various figures given of this species, as also a large anterior pharyngeal excavation. By Pritchard it is recorded as occurring among slimy water plants in the neighbourhood of Hampstead and Finchley.
Genus IV. Cryptomonas, Ehrenberg.

Animalcules free-swimming, illoricate, persistent in form, more or less ovate or elongate; flagella two in number, subequal, issuing from beneath a prominent, anterior, lip-like process; oral aperture conspicuous, opening close to the base of the flagella, continued backwards as a distinct tubular pharynx; endoplasm enclosing two lateral, longitudinally placed colour-bands; contractile vesicle and endoplasm conspicuous. Inhabiting fresh water.

The animalcules of this genus, excepting for the presence of the endoplasmic colour-bands, correspond in form and structure with those of Chilomonas.

Cryptomonas ovata, Ehr. Pl. XXII. Figs. 16–18.

Body elongate-ovate, compressed, usually narrowest and sometimes recurved towards the dorsal aspect posteriorly, about three times as long as broad; oral aperture large; pharyngeal passage conspicuous, tubular, continued backwards beyond the centre of the body; colour-bands bright green, mostly developed on the dorsal and ventral aspects throughout the entire length of the body; contractile vesicle situated immediately above the commencement of the pharynx; endoplasm posteriorly located. Length 1–600° to 1–400°. HAB.—Fresh water, amongst Confervae.

As shown by Stein's figures,* here reproduced, Pl. XXII. Fig. 18, the young of this species differ from the adults in possessing a flexible body and an acuminately pointed, recurved posterior extremity; the characteristic colour-bands are also limited during the earlier stages of growth to two green, subcentral, ovate corpuscles, which gradually assume a band-like outline as growth progresses, and finally extend throughout the length of the body. In those adult individuals which possess a recurved posterior region, it is explained by Stein that the cuticular surface has become indurated while retaining more nearly the external contour of the embryonic stage; these more exceptional examples which present a somewhat sigmoid flexure, have been described by Ehrenberg as a distinct species under the title of Cryptomonas curvata.

Cryptomonas erosa, Ehr. Pl. XXII. Figs. 19–21.

Body elongate-ovate, compressed, about twice as long as broad, the posterior extremity bluntly rounded, recurved slightly towards the ventral aspect; pharyngeal tube scarcely produced to the centre of the body; colour-bands light green; contractile vesicle and endoplasm as in C. ovata. Length 1–960°. HAB.—Fresh water, among Confervae.

This species may be distinguished from C. ovata by its shorter proportional length, smaller size, and ventral curvature of the posterior extremity. By Stein's figures it is shown to divide by longitudinal fission after the manner of Chilomonas. The nucleus or endoplasm in both this and the preceding type exhibits reproductive phenomena corresponding with those presented by Euglena and Phacus. By concentration, around this structure, of the substance of the endoplasm, or through

* 'Infusionsthier,' Abh. iii., 1878.
the extension of its own outer wall, it assumes a comparatively enormous size. Taking an ovate form it often—as shown at Pl. XXII. Fig. 19 n—occupies more than half of the cavity of the parenchyma, and ultimately divides by repeated fission into innumerable minute germs or microspores. By Stein this reproductive structure is denominated the germ-sac or germ-sphere ("Keimkugel"), but may perhaps be more appropriately distinguished as the sporosac.

Genus V. Nephroselmis, Stein.

Animalcules solitary, illoricate, free-swimming; flagella two in number, of diverse size, issuing from the centre of one of the lateral borders; endoplasm enclosing two lateral pigment-bands. Inhabiting fresh water.

Nephroselmis olivacea, Stein. Pl. XXII. Figs. 11–13.

Body subreniform, the dorsal border convex, the ventral one concave; the two flagella of unequal length, inserted close to each other in the centre of the concave ventral surface; coloured pigment-bands extending throughout the lateral peripheries; contractile vesicle situated close beneath the insertion of the flagella, two denser and apparently amylaceous corpuscles in the dorsal or posterior region. Greatest length or diameter of bodies, 1–1000". **Hab.**—Fresh water.

In form, the animalcules of this species would seem to closely resemble those of the *Pleuromonas* of Perty, but are to be distinguished from them by the possession of an oral aperture, two flagella, and distinct pigment-bands. Practically, the subreniform contour of this type may be said to be produced by the thrusting-in of the anterior border of an ordinary ovate animalcule accompanied by the compensating dilatation of the lateral peripheries. An example of multiplication by longitudinal fission is represented in Stein's drawings of this species.

Genus VI. Stylochrysalis, Stein.

Animalcules not secreting a protective lorica, attached separately to foreign objects through the medium of a stiff non-elastic pedicle; flagella two in number, subequal; endoplasm enclosing two lateral pigment-bands. Inhabiting fresh water.

Stylochrysalis parasita, Stein. Pl. XXII. Fig. 22.

Body ovate, somewhat pointed at each extremity; supporting pedicle varying from the same length to twice the length of the body; lateral pigment-bands evenly developed; contractile vesicle single, posteriorly located. Length of body, without pedicle, 1–2500". **Hab.**—Pond water, attached to *Eudorina elegans*.

In the examples of this species as yet simply figured and not described by Stein, one animalcule is delineated as undergoing the process of multiplication by transverse fission, while in all the zooids a structure which may be an eye-like pigment-spot or an oral dilatation is placed at the anterior extremity.
ORDER FLAGELLATA-EUSTOMATA.

Genus VII. UVELLA, Ehrenberg.

Animalcules united by their posterior extremities and forming social, free-swimming, spheroidal colonies, the individual zoolids not enclosed within a membranous lorica, nor the colony as a whole immersed within a common gelatinous matrix or zoocytium; flagella two in number, subequal; endoplasm containing two lateral colour-bands; an eye-like pigment-spot present or absent. HAB.—Fresh water.

The non-possession of a separate membranous investment or lorica by the animalcules of this genus serves to distinguish it from Synura.

Uvella virescens, Ehr. Pl. XXII. Figs. 24-26.

Bodies elongate-ovate or clavate, their united posterior extremities attenuate and stalk-like; flagella equal or subequal, exceeding the body in length; lateral pigment-bands bright yellowish-green, extending on each side through almost the entire length of the body; no conspicuous eye-like pigment-speck; contractile vesicles two in number, posteriorly located; endoplasm subcentral; colony-stocks containing from five or six to as many as seventy or eighty zoolids. Length of bodies 1-2000".

HAB.—Pond water.

The posterior location of the contractile vesicles, independently of the absence of separate loricae, serves at once to distinguish the zoolids of this species from those of Synura uvella, with which in their aggregate condition they may otherwise be readily confounded. The endoplasm, although not distinctly exhibited under ordinary conditions, is, according to Bütschli,* at once defined by the application of Beale's carmine. Encysted individuals possessing a delicate or irregular outer coat and a denser internal one, were encountered by this authority both in connection with the motile colonies and with the isolated animalcules. Longitudinal fission according with that of the ordinary Flagellata was likewise noticed.

Genus VIII. CHLORANGIUM, Stein.

Animalcules more or less ovate, persistent in shape, exhibiting two distinct phases of existence, the one motile and the other sedentary; in the former instance possessing two evenly developed, anteriorly inserted, vibratile flagella; in the latter condition non-flagelliferous, attached in social groups, mouth downwards, to a common pedicle; endoplasm enclosing two lateral colour-bands; contractile vesicle and endoplasm conspicuous.

This genus is instituted by Stein for the reception of the Colacium stentorinum of Ehrenberg, which he reports as differing from the several species of Colacium previously described in the possession by the motile zoolids of two flagellate appendages, a more or less firm and non-contractile cuticula, and in the development of two lateral coloured pigment-bands. Probably, as demonstrated by the present author in the case of Colacium Steinii, it will be ultimately shown that the flagella here also are retained during the sedentary condition.

Chlorangium stentorinum, Ehr. sp. Woodcut, Figs. 1-7.

Bodies elongate-ovate or subfusiform, about three times as long as broad; flagella terminal, subequal, not so long as the body; endoplasmic colour-bands bright green, produced throughout the whole extent of the two lateral borders, one of these including near its distal end an obscure, eye-like pigment-spot; contractile vesicle situated at the anterior extremity, close to the insertion of the flagella; endoplasm spherical, sub-central, attached during the sedentary condition to a short, simple, or slightly branching pedicle, in groups of from two or three to ten or twelve zooids. Length of zooids 1-1150".

HAB.—Pond water, on various Entomostraca.

This species was first described by Ehrenberg under the title of Stentor (i) pygmaeus, but is relegated in his subsequent work, 'Die Infusionsthierchen,' to the genus Colacium. The grounds upon which it has been found necessary to separate it from this last-named generic group, have been already indicated. The growth of the sedentary arborescent colony-stocks of this animalcule are produced, according to Stein's recently published volume, and as shown in the accompanying woodcut, by the endogenous subdivision of a primary attached zooid, whose cuticle finally bursting exposes the internally developed units, each with its anterior extremity firmly attached to the extremity of the parent pedicle. A portion of the posterior region of the parent cuticle frequently remains for a considerable interval embracing the base of the common stock and presenting, as seen in profile, Fig. 5a, the aspect of two lateral setose processes. Sporular multiplication, in which encysted zooids attached singly to their pedicles become divided up into a number of minute microspores, as shown at Fig. 7, is also placed on record by the authority just quoted. A distinct oral aperture has apparently as yet not been detected, but probably exists and corresponds with that possessed by Colacium.

Genus IX. Hymenomonas, Stein.

Animalcules solitary, free-swimming, secreting a more or less flexible lorica; flagella two in number, subequal; lateral pigment-bands conspicuously developed; no eye-like speck; contractile vesicles anteriorly located. Inhabiting fresh water.
The possession of a flexible investing sheath or lorica and two flagellate appendages chiefly distinguishes this generic group from *Chrysomonas*.

Hymenomonas roseola, Stein. Pl. XXII. Figs. 14 and 15.

Lorca ovate or ellipsoidal, soft and flexible, crenulate throughout its periphery, and assuming diverse contours in accordance with the change of form of the enclosed animalcule. Body of animalcule entirely filling the lorica, two yellow-brown pigment-bands extending evenly throughout the lateral margins. A large spheroidal fat-like or amylaceous body usually present in the posterior region; two contractile vesicles and a large vacuolar non-contractile space, possibly a pharyngeal sac, situated at the anterior extremity; no eye-like pigment-speck. Length of lorica 1–850".

Hab.—Fresh water.

Genus X. Chrysopyxis, Stein.

Animalcules solitary, ovate or spheroidal, non-contractile, inhabiting a sessilely attached lorica, but not united to the same by a thread-like pedicle; flagella two in number, of equal length, produced from the centre of the frontal margin, this last-named region rounded and without any projecting lip-like prominence; endoplasm enclosing two lateral colour-bands, but no eye-like pigment-spot. Inhabiting fresh water.

The animalcules of this genus are distinguished from those of *Epipyxis* by their two equal-sized flagella, persistent form, and the absence of the connecting pedicle between the body and the lorica. The single species referred to it is further remarkable for the peculiar spur-shaped prolongations of the posterior border of the lorica, and which penetrating in a root-like manner into the cell-wall of the *Confervae* to which they are usually attached, retain a close hold upon the same.

Chrysopyxis bipes, Stein. Pl. XXII. Figs. 28 and 29.

Lorca ovate or shortly flask-shaped, rounded and widest posteriorly, with a narrow circular anterior orifice, the length but slightly exceeding the greatest breadth, two diverging and acuminate spur-like prolongations developed from the posterior border, these penetrating and hidden within the cellular substance of the plant to which it is attached; animalcules subspheroidal, occupying the posterior half of the cavity of the lorica, the two flagella projecting to a considerable distance beyond its orifice, diverging widely from one another; colour-bands brownish, produced throughout the two lateral borders; contractile vesicles one or two in number, posteriorly situated; dividing by longitudinal fission. Length of lorica 1–1600".

Hab.—Fresh water, attached gregariously to confervoid algae.

In his illustration of this species, Stein* indicates the presence of a presumed oral aperture at the anterior extremity, close to the insertion of the two flagella. Like *Epipyxis utriculus* the species is eminently social in its habits, a number of individuals usually occurring crowded together upon a single cell of a *Mougeotia* or other confervoid algal.

* 'Infusionsthiere,' Abth. iii., 1878.
Genus XI. EPIPYXIS, Ehrenberg.

Animalcules contractile, ovate or pyriform, inhabiting solitary, sessilely attached, erect, transparent loricae, to the bottom or sides of which they are affixed by a contractile thread-like prolongation of the posterior extremity; flagella two in number, one short and the other long; endoplasm enclosing two longitudinal colour-bands and an anterior eye-like pigment-spot. Inhabiting fresh water.

The animalcules of this genus correspond essentially in general form and structure with those of Dinobryon, and are distinguished from them only by their secretion of solitary attached loricae in place of a compound branching polythecium.

Epiipyxis utriculus, Ehr. Pl. XXII. Figs. 30-33.

Lorica elongate-conical or subcylindrical, abruptly truncate or slightly everted anteriorly, widest centrally, tapering and attenuately pointed posteriorly, about four times as long as broad; enclosed animalcule elongate-ovate or pyriform, occupying about one-half of the cavity of the lorica, tapering, and continued as a thread-like pedicle posteriorly, the anterior border developed on one side as a small, conical, projecting lip; eye-like pigment-spot minute; contractile vesicle anteriorly situated, endoplasm subcentral. Length of lorica 1-640". HAB.—Fresh water on Conferva.

The loricae of this species, with their enclosed inhabitants, so closely resemble the separate theca and animalcules of Dinobryon sertularia that Stein originally held them to be early growths only of that form. In the third volume of his 'Infusionsthiere' he, however, recognizes their independent status and fully illustrates their varied aspects and habits. In some of the empty loricae figured by this authority, a delicate reticulate pattern is spread over the entire surface, and apparently indicates the presence of contained sporular bodies, or the traces of their previous existence; multiplication by fission is effected in a somewhat oblique direction. Though usually found attached in some numbers to the filaments of Edogonium and other water-plants, the loricae are in most instances conspicuously isolated from one another, but sometimes occur, as shown at Pl. XXI. Fig. 31, in small closely set fasciculi. The species has been recently obtained by the author in the neighbourhood of Ashby-de-la-Zouch.

Genus XII. DINOBRYON, Ehrenberg.

Animalcules bi-flagellate, having one long and one short flagellum, attached by a posterior contractile ligament within the individual cells or loricae of a compound branching polythecium; the polythecium constructed through the successive terminal gemmation of the primary zooids; endoplasm containing two lateral colour-bands and usually an anteriorly situated eye-like pigment-spot. Inhabiting fresh water.

Dinobryon sertularia, Ehr. Pl. XXII. Figs. 34-40.

Constituent cells or loricae of polythecium obconical, narrowest and tapering posteriorly, evertile at the mouth, slightly constricted a little beneath the anterior border, joined to each other without intermediary
or separate pedicles. Animalcules elongate-ovoid, not exerted, attached to the bottom of their respective lorica by a transparent elastic ligament. Eye-like pigment-speck conspicuous. Length of separate loricae 1–1200", of contained animalcules 1–2000". HAB.—Pond water.

This species, which may be regarded as the typical representative of the genus Dinobryon, has received the attention of numerous authorities since its first discovery by Ehrenberg. By no one of these, however, Stein and Bütschli excepted, does its structure and affinities appear to have been correctly apprehended, a circumstance doubtless explained by the extreme minuteness of the individual animalcules and the consequent necessity of employing the highest available magnifying powers for their satisfactory determination. Hitherto this form has been regarded and described as a uniflagellate type much resembling Euglena, and from which alone it was chiefly distinguished by its compound protective lorica. Professor H. James-Clark, apparently without a previous acquaintance with the type, refers to it, in the course of his remarks on the genus Codoneca, as a “calculated Euglenian.”

The first results that attended the author’s examination of this elegant species, in the year 1871, with a sufficient amplifying power, was the detection of two flagella, one long and the other considerably shorter, in place of the single appendage previously ascribed to it, while it was at the same time elicited that the animalcules were attached to the base of their respective loricae through the medium of a separate retractile ligament. Those two points at once establish the near relationship that exists between this form and the genus Epiphyxis. The compound colony-stocks of Dinobryon sertularia are frequently met with containing no fewer than fifty to sixty separate loricae, which are so united to one another as to present as a whole a remarkable resemblance in miniature to the polyparies of certain of the Polyzoa or Sertularian Zoophytes. The adult colonies thus constructed are usually found progressing through the water with a rolling action and considerable velocity, being propelled by the rapid vibration of the innumerable flagella. In its younger state it is however an essentially sedentary form, the primary zooid with its investing lorica being attached to some fulcrum of support, as in other ordinary pedicellate types here described. As the colony develops, the lower or primary cells become atrophied, much in the same manner as the lower portion of the branch of a madreporic coral, and these deserted cells being unable to bear the weight of the superincumbent mass, snap off, and thus release the colony into the surrounding water under those conditions which are most usually met with. No process of reproduction in Dinobryon sertularia has been yet observed in addition to the ordinary one of oblique fission, as in Epiphyxis. The resultant of such fission, however, in most cases, instead of swimming off to form the foundation of a new settlement, attaches itself just beneath the margin of the aperture of the parent lorica, and then builds up a corresponding domicile. This process in the course of a few generations results in the formation of the elegant compound polythecium characteristic of the adult colony.

Both Bütschli and Stein have recently recorded the production by this animalcule of spherical encystments, as represented at Pl. XX. Figs. 38–40; it is a remarkable fact, however, that the well-developed posterior ligament or footstalk, by the contraction of which the zooids are enabled to retreat rapidly to the further confines of their loricae, has not been distinctly recognized in this species by either of these authorities. The oral aperture, according to Stein, is immediately adjacent to the point of insertion of the two flagella and scarcely to be distinguished from the eye-like pigment-speck.

Dinobryon stipitatum, Stein. Pl. XXII. Fig. 41.

Loricae elongate, trumpet-shaped, widest and slightly everted anteriorly, tapering, attenuate, and acuminate posteriorly, the total length equalling seven or eight times the greatest breadth; zooids elongate-ovate,
occupying the anterior half of the cavity of the lorica, attached to the side-
wall of the same by a thread-like prolongation of the posterior region;
primary flagellum exceeding the body in length and three times longer
than the secondary one; eye-like pigment-spot conspicuous; contractile
vesicle situated a little in advance, and the endoplasm a little to the rear of
the centre of the body. A large, subspheroideal, fat-like amylaceous cor-
puscle located near the posterior extremity. Length of loricae, 1–300".

HAB.—Fresh water.

The great proportional length and attenuate posterior terminations of the loricae
of this species, as figured by Stein,* distinguish it conspicuously from the preceding
type. This elongate outline of the posterior region is so marked as to almost
acquire the character of an independent pedicle, while the contour of each inde-
pendent lorica, as a whole, may be appropriately compared with that of a post-horn.

Dinobryon juniperinum, Eichwald. Pl. XXII. Fig. 23.

Cells of polythecium evenly ovate or fusiform, not everted at the anterior
border but tapering equally towards each extremity, joined to one another
without the intermedium of a stalk-like prolongation; the entire colony
consisting of a straight median line of the constituent cells, from the
anterior borders of each of which three cells originate, one directed straight
forwards and continuing the main rachis, and one other on each side of this
median one, which become further developed into oblique lateral branchlets,
these latter subdivisions frequently giving rise to secondary oblique off-
shoots. HAB.—Fresh water. Dimensions unrecorded.

The compound polythecium of this species only is figured and described by
Eichwald in his 'Infusorienkunde Russlands,' 1847, no reference being made to the
inhabiting animalcules. The evenly ovate shape of the individual cells and the
symmetrical rectilinear mode of growth of the general colony, distinguish it in a
marked manner from *D. sertularia*.

Doubtful Species.

A description of two additional species of the genus *Dinobryon* is included in
Pritchard's 'Infusoria,' p. 547, the characteristics of which, however, as here repro-
duced, are almost too vague for reidentification.

Dinobryon (?) sociale, Pr.—"Small; enveloped in a shell of a simply
conical shape, truncated at the mouth. Developed in the form of a shrub-
like polypary. In fresh water. 1–860"; cluster 1–280".

Dinobryon gracile, Pr.—Less branching (fruticose), lorica slightly con-
stricted at the middle, aperture truncated. Animalcule 1–2080".

The *Dinobryon petiolatum* of Dujardin is transferred by the author of this treatise
to De Fromentel's genus *Stylobryon*, and is evidently identical with both the
S. insignis of that writer and with the *Poterioldendrum petiolatum* of Stein.

GENUS XIII. SYNURA, Ehrenberg.

Animalcules free-swimming, united in subspheroideal social clusters,
each zooid contained in a separate membranous sheath or lorica, the
posterior extremities of which are confluent; flagella two in number,

* 'Infusionsthiere,' Abth. iii., 1878.*
ORDER FLAGELLATA-EUSTOMATA.

subequal; endoplasm containing two lateral pigment-bands, one or more coloured eye-specks usually developed. Inhabiting fresh water.

Known only by the figures and descriptions of Ehrenberg, the single type-form of this genus has been regarded as an entirely doubtful species, and, together with Syncrypta and Uroglena, been even discarded by Mr. Carter as spermatic or developmental phases of the vegetable types Volvex or Spharophrya. As recently shown by Stein, however, this form possesses a sound claim for independent recognition. It is further demonstrated by this authority that Ehrenberg was wrong in assigning to the spheroidal colonies the possession of a common gelatinous matrix, as in Syncrypta and Uroglena, in addition to the individual lorica. What Ehrenberg took for such an element were probably the minute, thickly set, filamentous or spinous processes, now made known by Stein to be developed throughout the external surfaces of the lorica of the type in question, but which are to be recognized as distinct structures only when the organism is examined with the aid of an exceedingly high magnifying power. The presence of two flagella, eye-specks, colour-bands, and other histologic details, are also for the first time demonstrated by this authority.

Synura uvella, Ehr. Pl. XXIII. Figs. 1 and 2.

Lorica pyriform, tapering posteriorly, sometimes prolonged in a stalk-like manner, their external surface posteriorly beset with evenly developed spinous processes; contained animalcules almost entirely filling the cavities of the lorica, their posterior extremity produced towards and adherent to the bottom of the same; flagella subequal, eye-like pigment-specks minute, two in number, sometimes absent; a large vacuolar space, apparently representing a pharyngeal dilatation, developed at the anterior extremity; colour-bands produced equally throughout the length of the two lateral borders; contractile vesicles two or three in number, posteriorly located; endoplasm situated in the middle line, immediately behind the two eye-like specks. Length of individual loricae 1–740"; diameter of spheroidal colonies 1–350" to 1–200", these latter often consisting of as many as eighty zooids.

HAB.—Pond water.

Stein regards the type figured by him as the eyeless variety of this species, Pl. XXIII. Fig. 1, as identical with the *Uvella virescens* of Ehrenberg. Bütschli, however, figures and describes as representing this last-named organism an entirely distinct form in which there is no lorica with its spinous processes and no conspicuous pharyngeal dilatation, such species being here accepted as typifying the genus *Uvella*. Stein has further proposed to unite with this organism the *Mallomonas Plosslii* of Max Perty, which he regards as isolated individuals of *Synura uvella*, with the setose or spinous processes of their loricae greatly produced. *Mallomonas* is, however, an entirely distinct monoflagellate animalcule, having, as demonstrated by the author's description and illustrations elsewhere submitted, nothing in common with the Chloromonadidae.

Doubtful Species.

Under the title of *Rhodessa grimselina*, Perty figures and describes, apart from *Uvella virescens*, a species apparently belonging to this same genus *Synura*. No reference to a distinct lorica is given, but the margin of each body is reported to be distinctly and finely crenulate. Except for two evenly developed bright green lateral pigment-bands the body-substance is entirely transparent. The crenulation exhibited represents probably the periphery of a separate lorica. The type was obtained by

"Zeitschrift für Wissenschaftliche Zoologie," Bd. xxx., 1878.
GENUS SYNCYRTA.

Perty in bog water on the Grimsel Alps. The length of the individual zooids is given as 1-840" to 1-600", and the diameters of the united colonies as 1-180". These colony-stocks contain from three or four to as many as thirty zooids; the spheroidal mass formed, according to his delineations reproduced at Pl. XXII. Fig. 27, being very irregular.

GENUS XIV. SYNCYRTA, Ehrenberg.

Animalcules free-swimming, illoricate, united socially by their posterior extremities in spheroidal or rosette-shaped clusters, the whole colony-stock being immersed within a granular, gelatinous matrix or zoocytium, beyond the periphery of which the flagella alone project; flagella two in number, subequal; lateral colour-bands conspicuously developed; one or more eye-like pigment-specks usually present.

Previous to the publication of Stein’s recently issued volume, the position of the single specific form referred by Ehrenberg to this genus was very doubtful; Dujardin regarded it as closely allied to or identical with Cryptomonas, while Mr. Carter declared it to be the spermatic form of Volvox or Sphärophyra. As more thoroughly investigated by Stein, it is, however, now shown to be an independent type most nearly allied to Uroglena, but differing from that genus in the close approximation, without any intermediate spaces or contractile pedicles, of the zooid clusters, and through the possession by the animalcule of two eye-specks instead of a single one.

Syncripta volvox, Ehr. Pl. XXIII. Fig. 3.

Bodies ovate, tapering posteriorly, and there united together so as to form rosette-shaped colonies of four, eight, sixteen, or thirty zooids; the investing zoocytium granular, and somewhat dense; flagella two in number, subequal; colour-bands evenly developed, of a brownish hue, extending throughout the two lateral borders; eye-like pigment-specks two in number, one stationed at the anterior extremity of each of the two colour-bands; the contractile vesicle located a little behind the eye-specks and in the clear space between the colour-bands. Length of individual zooids 1-2500", diameter of social colonies, including gelatinous zooglæa, 1-570".

HAB.—Pond water.

As originally figured and described by Ehrenberg, the zooids of this colonial form are represented as possessing a single flagellum only, but Stein in his recently published illustrations of the Flagellata records the existence of two, as also of the eye-specks and contractile vesicles, which had not been detected by Ehrenberg. Stein is not very clear in his delineation of the relative length of the two flagella, in some cases they being delineated as equal and in others as diverse in length. The balance of evidence is, however, seemingly in favour of their uneven development, such proportions obtaining in Dinobryon, Epityxys, Uroglena, and all other members of this family group that have been examined by the present author with the aid of the highest magnifying powers. It is a further significant fact that in this instance, as also in most others in which two uneven-sized flagella actually exist, Ehrenberg has represented a single one only, the smaller of the two having no doubt been beyond the defining capacity of his instruments. In the protophytes Volvox and Chlamydo-monas, on the other hand, where the two flagella are of even length and calibre, this authority has as invariably assigned to them their true character and proportions.
Genus XV. Uroglena, Ehrenberg.

Animalcules enclosed socially within a subspheroidal gelatinous matrix or zoocytium, to the centre or deeper substance of which they are united through the medium of slender, thread-like, highly contractile, posteriorly developed prolongations; in their normal or extended condition the anterior borders of the individual animalcules impinging upon or projecting slightly beyond the periphery of the zoocytium, but capable at will, through the contractions of the filiform posterior prolongations, or pedicles, of being withdrawn entirely within its substance; flagella two in number, of diverse size; endoplasm enclosing two distinct lateral colour-bands, and usually one or more eye-like pigment-spots. Inhabiting fresh water.

Uroglena volvox, Ehr. Pl. XXIII. Figs. 4-15.

Colony-stocks subspherical or more or less asymmetrical; bodies pyriform, the anterior border rounded, somewhat obliquely truncate, tapering posteriorly, and thence continued backwards in the form of a long, slender, hyaline, and highly contractile thread-like prolongation; lateral pigment-bands yellowish-green, of uneven length; eye-like spot single, situated anteriorly and in the median line, close to the base of the two flagella; flagella of conspicuously diverse size; contractile vesicles two in number, located close together near the centre of one of the lateral borders; a large ovate and apparently amylaceous corpuscle mostly developed towards the posterior half of the body. Length of bodies 1-1200", average diameter of social colony-stocks 1-90". Hab.—Pond water.

This type, in common with Syncrypta, Synura, and other socially aggregated Chloromonadidae, has been usually regarded as a doubtful form probably representing an imperfect or transitional condition only of the protophytes Volvox or Sphaerosira. Quite recently, however, it has been shown by both Bütschli and Stein, to be an independent organism exhibiting, with relation to the form and characters of the individual zooids, an entire conformance with the several other generic types comprised in the Chrysomonadidae. Examples of this species were likewise remitted to the author during the month of June 1879, by Mr. H. E. Forrest and Mr. Thomas Bolton, from the neighbourhood of Birmingham, the result of such a personal acquaintance with it being the discovery of various supplementary structural and developmental phenomena here recorded for the first time. More especially in this connection may be mentioned the establishment of the possession by the zooids of a posteriorly developed thread-like pedicle, first imperfectly observed and interpreted by Ehrenberg as a simple tail-like prolongation, but entirely overlooked by both Stein and Bütschli. This structure is, in fact, so slender and transparent as to require a high magnifying power, 600 to 800 diameters, and the nicest adjustment of the illumination for the demonstration of its existence. Such conditions being secured, however, its presence is conspicuously apparent both in living examples and in specimens treated with osmic acid and permanently preserved. Under the latter auspices, indeed, this special structure may perhaps be most readily identified, though its contractile properties and complete conformity with the contractile pedicles of Dinobryon and Epipyxis are recognizable only in the living state.

Among the data observed by the author with reference to the reproductive phenomena, it has to be recorded that zooids were abundantly found withdrawn into the common matrix or zoocytium, devoid of flagella, and presenting every step
of gradation from a simply quiescent but non-encapsuled stage up to subdivision into two, four, or eight spheroidal segment-masses or sporular elements. These spores becoming distributed throughout this common gelatinous matrix, speedily acquire the adult forms and characters, and are in most instances provided with the two lateral colour-bands and eye-like pigment-spot at or immediately succeeding their earliest appearance. In the majority of the specimens examined this mode of reproduction was alone observed, and is chiefly to be seen in the two colony-stocks delineated at Pl. XXIII. Figs. 4 and 5. Not unfrequently, however, examples were met with which enclosed supplementary spheroidal structures, having a diameter of two or three times that of the bodies of the adult zooids, three of these being included in the colony-stock illustrated by Fig. 4. On making a closer investigation it was found that these supplementary structures consisted of aggregations of sporular-like bodies contained within a hard and glass-like transparent membrane or sporocyst, which exhibited its brittle consistence by rupture under artificial pressure into a number of angular fragments, as shown at Pl. XXIII. Figs. 10 and 11. The sporular elements thus liberated from their indurated capsules were found to possess two entirely distinct dimensions, being in the one instance, Fig. 11, of comparatively large size, the \(i - 6000 \)th of an inch in diameter, while in the second case, Fig. 10, they did not exceed the \(i - 20,000 \)th of an English inch. Not improbably, however, these smaller sporular bodies represent a further segmented phase only of the larger ones, and in both instances they are so minute as to merit the designation of "microspores" in contradistinction to that of "macrospheres," which may be appropriately applied to the structures derived from the simple segmentation into two, four, or eight sporular elements of the ordinary unencapsuled zooids, as previously described. The precise import of these encapsuled sporular elements has not yet been determined; but from the proportionate size of their investing sporocysts it may be consistently predicated that they were primarily derived through the conjugation or genetic union of two or more ordinary zooids, while their encapsuled state would seem further to denote that surviving the disintegration of the parent colonies, and probably the drying up of the water with the summer drought, they secure the permanent preservation of the species.

With reference to the retention and development of the larger and naked sporular elements of *Uroglena* within the common gelatinous matrix of the parent colony, the similarity of the phenomena to what obtains among the co-ordinate section of the Spongida, and as related at length in a preceding chapter, is at once made manifest. Additional testimony in this direction has to be recorded. The author has on several occasions observed within the parent colonies the presence of smaller spheroidal aggregations, apparently corresponding with the "daughter-spheres" of *Volvox* or *Eudorina*, but which, in the event of further corroboration, may be found to possess a still more important significance. These are, in fact, directly comparable with the ciliated gemmules or so-called ciliated larvae of the sponges as they occur in their simplest state, and consist in a like manner of a vesicular moruloid structure, built up of a single stratum of closely approximated flagellate zooids. In a similar way these daughter-spheres of *Uroglena* provide for the more extensive local dissemination of the species, while the ordinary zooids by simple sporular segmentation contribute towards the enlargement of the parent colony. There can be but little doubt that, as in the case of the daughter-spheres of *Volvox* and the ciliated gemmules of the Spongida, these corresponding structures in *Uroglena* are derived from the primitive coalescence of a considerable number of single cells or zooids. Though this process has not as yet been directly observed, it may be predicated by their occupation of an area towards the periphery corresponding with that normally held by some half a dozen or more of the ordinary animalcules.

Although a single contractile vesicle only is attributed to the zooids of *Uroglena* by Bütschli, while such a structure is entirely absent in Stein's latest delineations of this species, two alternately contracting ones situated towards the centre of one lateral border have been distinctly seen by the present author. Some amount of doubt has hitherto existed as to whether the gelatinous matrix in which the zooids of *Uroglena* are immersed, is continuous to the centre of the common spheroidal
mass, or whether this central space is simply fluid; Bütschli inclines to the last-named alternative, having, he says, observed diatoms and other foreign bodies moving freely in this position. The present author is, however, disposed to maintain that this matrix persists throughout, being most fluid centrally and becoming gradually denser as the peripheral region is approached. In both living and preserved examples no trace whatever could be detected of distinctly differentiated internal and external zones.

From Volvox, Syncrypta, Synura, and various other free-floating animal and vegetable Flagellate types, for which the colony-stocks of Uroglena volvox are something liable to be mistaken, an easily recognized superficial feature of distinction is afforded by the general contour of the colony-masses, which rarely exhibit that perfect spherical symmetry which characterizes the several first-named forms.

Fam. VI. ZYGOSELMIDÆ, S. K.

Animalcules solitary, free-swimming or repent; flagella two in number, similar in character, both vibratile; endoplasm sometimes coloured green, but not enclosing differentiated lateral pigment-bands; oral aperture distinct, terminal; one or more eye-like pigment-specks frequently present. Mostly inhabiting fresh water.

Genus I. EUTREPTIA, Perty.

Animalcules free-swimming or repent, plastic and changeable in form, ovate or elongate; oral aperture terminal, funicular; flagella two in number, vibratile, of equal size, issuing from the terminal oral fossa; endoplasm coloured a brilliant green, enclosing an anterior eye-like pigment-spot; contractile vesicle anteriorly situated; endoplasm subcentral. Inhabiting fresh water.

Excepting for the possession of two equal-sized flagella and the exhibition of the peculiar peristaltic movements presently described, the as yet single known representative of this genus corresponds essentially with Euglena.

Eutreptia viridis, Pty. Pl. XXI. Figs. 54-59.

Body soft and plastic, exceedingly variable in form, its more normal contour when swimming pyriform, broadest and widest anteriorly, with an attenuate and pointed caudal prolongation, at other times elongate and subcylindrical, sub fusiform, napiform, or variously constricted, often repent, creeping over the surface of submerged objects by active peristaltic contractions; flagella slender, equalling the body in length; eye-like pigment-spot conspicuous, scarlet; contractile vesicle located close to the last-named structure; endoplasm spherical, subcentral. Length 1-240".

HAB.—Pond water.

Since the discovery and description of this animalcule by Max Perty in 1852, it does not appear to have fallen beneath the observation of any other investigator and has been more usually regarded as an imperfectly recorded phase of some one of the various species of Euglena. As such it is dismissed by Stein in the third volume of his 'Infusionsthiere,' and until quite recently this verdict was accepted by the present author. So late as February 1879 this type has, however, been encountered in considerable numbers in pond water from near the village of Samares, Jersey,
such discovery justifying its reinstatement as a well-marked generic form. In addition to the two long, equal, vibratile flagella, which were in all normal conditions distinctly seen, the peculiar and rapid peristaltic movements exhibited by the animalcule during its repent state, distinguish it in a marked manner from the various species of Euglena and approximate it more nearly in this respect with the members of the genus Distigma or the essentially repent protozoic type Gregarina. In the examples examined, it was noted that very soon after their transfer to the object-slide they abandoned their natatory for the repent mode of progress, which is possibly the more general and congenial. Encysted conditions were frequently observed, and also the breaking up of the contents of the encysted zooids into innumerable sporular bodies which were subsequently liberated in the form of minute, green, non-flagellate amœbae, these phenomena corresponding with those already recorded of Euglena viridis. Prior to their acquisition of the typical adult state, it is worthy of note that the amœbiform germs possess a single flagellate appendage only, being under such conditions altogether indistinguishable from minute Euglena.

As compared with Perty's original figures, the animalcules of Eutreptia were not observed during their natatory state to assume so attenuately pyriform a contour as he delineates, the pointed caudal prolongation in the Jersey specimens rarely exceeding one-half of the length of the inflated body-portion, while in the former case it frequently equals or even exceeds this region in length. Perty's so-called variety unifilis of this species represents apparently the young condition only, as above described.

GENUS II. ZYGOSELMIS, Dujardin.

Animalcules highly metabolical and variable in form, swimming with the aid of two unequally developed flagellate appendages, which issue from the pointed anterior extremity; oral aperture at the base of these flagella, followed by a distinct tubular pharynx; endoplasm transparent, granular; no eye-like pigment-specks. Inhabiting fresh water.

In their constantly changing form, the animalcules of this genus may be most appropriately regarded as biflagellate Astasia. Bütschli has proposed to identify the type species Z. nebulosum with Chilomonas paramecium, an animalcule, however, with which, excepting for its possession of two flagellate appendages, it can scarcely be said to share a single point in common.

Zygoselminus nebulosa, Duj. Pl. XXI. Figs. 52 and 53.

Body variable, ovate, globular, or pyriform, changing its form slowly from one to the other, endoplasm densely granulate; cuticular surface finely striate obliquely; flagella of conspicuously diverse length. Length of body 1-1250" to 1-500". HAB.—Pond water.

Stein records the existence of a distinct oral aperture and pharyngeal passage at the base of the two flagella, and delineates an example in his recently published volume, reproduced at Pl. XXI. Fig. 53, whose body is abnormally distended through the ingestion of two comparatively large diatom frustules. The animalcule at Fig. 59, bearing three flagellate appendages, is, as explained by Stein, about to divide by longitudinal fission. Dujardin, who appears to have observed this type on one occasion only, describes it as incessantly changing its form as it swims through the water, after the manner of an Astasia.

Zygoselminus inæqualis, Perty.

Body hyaline, colourless, slowly assuming various shapes; one flagellum somewhat shorter than the other; parenchyma sometimes filled with clear green granules; movements sluggish. Length 1-840".
ORDER FLAGELLATA-EUSTOMATA.

The difference between this and the preceding species appears to be only one of size, and almost too slight for separate distinction.

GENUS III. DISTIGMA, Ehrenberg.

Animalcules free-swimming, highly elastic and changeable in form; flagella terminal, two in number, one long and one short, both vibratile; oral aperture close to the base of the flagella, succeeded by a long, tubular pharyngeal passage; endoplasm transparent, usually enclosing two anteriorly developed, minute, eye-like pigment-spots; contractile vesicle and endoplasm conspicuous.

Distigma proteus, Ehr. Pl. XXI. Figs. 46-51.

Body highly metabolic, scarcely ever presenting the same contour, usually more or less elongate, with irregular constrictions and distensions; longer flagellum nearly equalling the body in length, the shorter one scarcely one-quarter that length; endoplasm transparent, enclosing numerous dark-coloured refringent corpuscles whose positions are constantly shifting from one extremity to the other in accordance with the peristaltic motions of the body; two minute, blackish, eye-like pigment-spots usually developed at the anterior extremity; tubular pharynx slender, greatly prolonged; contractile vesicle conspicuous, located close to the termination of the pharynx; endoplasm ovate, subcentral. Length 1-580" to 1-240".

HAB.—Pond water, among Lemna.

Stein * refers this species to the genus Astasia, here and elsewhere more generally retained for the reception only of certain monoflagellate types. He further proposes, in his index to the figures given, to identify the countless protean forms assumed by this animalcule with the Proteus tenax of O. F. Müller and Distigma proteus et tenax, Astasia flavicans et pusilla, and Monas punctum of Ehrenberg; these last three hypothetic species being more especially identified with the earlier stages of its growth. In neither of the two first-named forms did Ehrenberg detect the presence of any flagellate appendage, and it was assumed by him that such do not exist; the movements of the animalcule were further described by this authority as simply repent and peristaltic. As shown by Stein, however, it is only the older zooids that lose their flagella and lead a repent life, the younger and more normal ones possessing two conspicuous but unequal sized flagella, as indicated in the preceding diagnosis. This elder creeping phase corresponds evidently with the amœboid one assumed by the majority of the Flagellata as a preliminary step to the act of coalescence or encystment. The peculiar peristaltic movements exhibited by the representatives of this species, both during their natatory and repent states, coincide closely with those that characterize the Gregarinida, and are, with the exception of Eutreptia, met with nowhere else among the Infusoria. The Proteus tenax of O. F. Müller, while greatly resembling the repent phase of the present species in outward form, is possibly, from the description given of the parenchyma—"pellucid and filled with black granules"—a species of Gregarinæ, identical probably with the one infesting various species of Cyclops, and not unfrequently found free in the water containing this abundantly distributed Entomostracan. As such an independent Gregarine type Stein has indeed previously recognized it, describing it† under the title of Monocystis tenax. The Distigma viridis of Ehrenberg would

* 'Infusionsthiere,' Abth. iii., 1878.
† Ibid., ii., 1867, pp. 7 and 8.
appear to be identical or closely allied to the *Eutreptia viridis* of Perty, previously described.

The author has quite recently, November 1880, received specimens of this interesting animalcule, *Distigma proteus*, from Mr. Thomas Bolton, its companions in the sample of pond water forwarded being *Spirostomum teres*, *Paramaecium chrysalis*, *Astasia trichophora*, and *Euglena acus*. The various protean forms reproduced from Stein's work in the accompanying plate were abundantly exhibited during their natatory condition by the examples examined, each change of contour being accompanied by the rapid flowing from one extremity to the other of the endoplasmic corpuscles in the manner indicated in the foregoing diagnosis.

Yet a week later the author has had remitted him, through the same agency, a small phial absolutely teeming with the young eyeless condition of this animalcule, as delineated at Figs. 49-51 of Pl. XXI. These were found to be much more persistent in shape than the adult zooids. While observed during the first four days to change their form at more or less frequent intervals, it was noted towards the end of the fifth and sixth days that they generally assumed a compressed spirally twisted contour. The diagonal striation of the cuticle in two directions, as represented in Stein's figure (Pl. XXI. Fig. 49), was conspicuously developed in almost every instance. The correspondence, in both size and contour, of the young *Distigma* with Dujardin's *Zygoselmis nebulosa* is certainly very close, and suggests the probability of their proving to be synonymous. While going to press, the animalcules are enjoying their active natatory existence, but owing probably to the absence of their customary food, have scarcely increased in size, their average length, as when first received, ranging from 1-800" to 1-500".

GENUS IV. CRYPTOGLENA, Ehrenberg.

Animalcules free-swimming, solitary, plastic and changeable in form, enclosed within a rigid membranous sheath or lorica; flagella two in number, subequal; endoplasm coloured green throughout; an anteriorly located eye-like pigment-speck usually developed.

The representatives of this genus were considered by Dujardin to be so closely related to *Cryptomonas* and the Phytozoon *Chlamydococcus* as to forfeit claim to independent recognition, this verdict being coincided with by Pritchard. The author of this treatise is, nevertheless, disposed to regard the type species, *Cryptoglena conica* of Ehrenberg, as a well-marked independent form, most closely allied to the genus *Eutreptia*, and occupying towards it a position corresponding to that which subsists between the two genera *Euglena* and *Trachelomonas*. The *Cryptoglena lenticularis* of Carter* is evidently a species of *Chlamydococcus*, while his *C. cordata* has been transferred by Stein to the new genus *Tetraselmis*.

Cryptoglena conica, Ehr. Pl. XXI. Fig. 42.

Lorica elongate-ovate or obconical, somewhat truncate anteriorly, more or less pointed posteriorly, sometimes slightly curved; body of animalcule occupying the two anterior thirds of the cavity of the lorica; flagella two in number, evenly developed; endoplasm bluish green; a conspicuous scarlet eye-like pigment-spot developed at the anterior extremity; two more opaque, ovate, and apparently amyleaceous corpuscles frequently present in the posterior region. Length, including lorica, 1-1100".

HAB.—River water.

According to Ehrenberg the animalcules of this species progress forward rapidly in the direction of their longitudinal axis, and if interrupted in their course, spring or

* 'Annals of Natural History,' Oct. 1858.
leap briskly to one side. The Cryptoglena caruleis of the same authority is evidently an illoricate type not referable to the present generic group, and whose true relationship is as yet doubtful. The form figured by both Ehrenberg and Stein under the name of Cryptoglena pigra is here made the type of the new genus Chloromonas.

Cryptoglena angulosa, Carter. Pl. XXI. Figs. 43–45.

Lorica oblong, angular, and compressed, truncate, but with a short projecting neck on the anterior margin, the posterior border rounded; in lateral view the anterior and posterior borders curved in opposite directions and exhibiting a sigmoid outline; body of enclosed animalcule occupying the greater portion of the lorica, but leaving free a conspicuous peripheral border; flagella equal in size; two contractile vesicles situated close to each other at the anterior extremity; a red eye-like pigment-spot located on one side of the periphery; from one to four amylaceous corpuscles usually developed towards the posterior extremity. Length of lorica 1–1080". HAB.—Fresh-water lakes in the island of Bombay.

The encysted state of this species was observed by Mr. Carter,* as also its subdivision under such conditions into two and four sporular bodies, these latter being ultimately liberated, by the dehiscence of the old lorica, which becomes smooth and dilated, as zooids of smaller size, but corresponding in all other respects with the parent form. The movements of this animalcule are described by its discoverer as being directed forwards, but in an exceedingly irregular line.

Genus V. Sterromonas, S. K.

(Greek, steros, stiff; monas.)

Animalcules free-swimming, elongate, more or less persistent in form bearing two flagella of diverse size at the anterior extremity, the longer of which is extended arcately and stiffly in advance, while the shorter one is actively vibratile and flexible throughout; oral aperture indistinct; endoplasm transparent, granular; no eye-like pigment-specks; contractile vesicle and endoplast conspicuously developed.

Sterromonas formicicna, S. K. Pl. XXIV. Figs. 40–42.

Body elongate, gibbous, nearly three times as long as broad, inflated and widest posteriorly, narrower in the centre, slightly widening again anteriorly; both the anterior and posterior margins obliquely truncate or angular as seen in profile; flagella inserted close to one another near the centre of the frontal border, the longer one equalling the body in length, directed stiffly in advance, arcuate at its distal termination, the shorter one less than half the length of the other, flexible and tremulous throughout; endoplasm transparent, enclosing numerous granules of irregular form and size; endoplast spherical, subcentral; contractile vesicle posteriorly located. Length of body 1–2000" to 1–1250".

HAB.—Vegetable infusions in salt and fresh water.

* 'Annals and Magazine of Natural History,' 1859.
The animalcule, as above characterized, presents in profile an aspect so strikingly suggestive of the body of an ant, with its gibbously inflated posterior and constricted central portion, that a specific title indicative of this likeness is herewith conferred upon it. The generic name of Sterromonas, from στερρόμος, rigid or unbending, bears reference again to the stiff movements in the water of this as yet single known representative of the genus, and which are chiefly induced by the constantly rigid extension of the longer flagellum. Even when altering its course, the animalcule swings round on its axis, as though on a swivel, without visibly bending its body or this organ in the slightest degree, and which thus seems to more closely resemble a stiff seta than a flagellate appendage. At the same time it would appear that this structure is motile at its free extremity, in a swift vibratory manner as in the Pantostomatous genera Spunella and Oikomonas. In addition to its normal leisurely progress in a straight line, apparently accomplished by the tremulous motions of the shorter flagellum, this animalcule occasionally darts across the field with remarkable rapidity, and it is probable that under these circumstances, the longer, arcuate flagellum constitutes the chief organ of propulsion. The species possesses prominent adaptive capacities, appearing in equal abundance in artificial infusions of hay in both fresh and salt water. The latter medium, indeed, seemed to prove the more congenial, it attaining in this one only, the larger dimensions of 1-1250" cited in the foregoing diagnosis. An example was observed in one instance to form a spherical encystment, such entrance upon a quiescent condition being preceded by the assumption of an irregular amœboïd shape. The aspect of the zooids of this species considerably resembles that of the natatory conditions of Oikomonas mutabilis, represented at Pl. XIII. Figs. 57 and 58. Its smaller size, persistency of shape, and possession of two flagella readily distinguish it, however, from that type.

Under the title of "Flagellaten-rhizopodenartige Protozoen" O. Bütschli has described and figured* a flagellate organism which must perhaps be accepted as a second species of the genus Sterromonas. The contour of this organism in dorsal view is more symmetrical than that of S. formicinus, being subcylindrical, with a slightly narrower anterior extremity; the frontal border is obliquely truncate, a spherical endoplasm is stationed at the anterior extremity, and the contractile vesicle is adjacent to the centre of the right-hand border; the endoplasm is more evenly and finely granulate than in the form just described. Bütschli indicates a single long and apparently stiff, arcuate flagellum at the apical extremity, but it is quite possible a second shorter one exists, which has been overlooked. This form was found in water with decomposing organic substances, in company with Anthophyta vegetans and other flagellate types; the length given is 0·03 mm., or about 1'800". Observing an example assume an amœboïd state, accompanied by the extension of pseudopodic processes, Bütschli has adopted this amœbiform condition as the mature and adult one, regarding the flagellate monad as its larval or zoospore-like phase. This amœba-like type he further proposes to identify with the Nuclearia simplex of Cienkowski. It is evident, however, that this amœbiform organism represented merely that transitory condition of the flagellate monad preceding encystment common to so many members of the Flagellate class, and that it is the flagellum-bearing zood that must be regarded as the typical expression of the species. Presuming that this animalcule is generically related to S. formicinus, it is here proposed to distinguish it provisionally by the title of Sterromonas Bütschlii.

GENUS VI. DINOMONAS, S. K.

(Greek, deinos, terrible; monas.)

Animalcules free-swimming, ovate or pyriform, soft and plastic, but not metabolic; flagella two in number, equal or subequal in length, vibratile, inserted close to each other at the anterior extremity; endoplasm transparent, granular; no eye-like pigment-spot; oral aperture very expan-

* 'Zeitschrift für Wissenschaftliche Zoologie,' Jan. 1878, p. 269, pl. xiii. fig. 22a.
sive, located at the anterior extremity immediately beneath the insertion of the flagella, visible only at the time of food ingestion, not supplemented by a distinct pharyngeal passage; feeding voraciously on other flagellate types, which they swallow whole. Inhabiting vegetable infusions.

This genus is instituted for the reception of two species corresponding with one another both in their broad external features and in their active predatory habits. This latter characteristic, combined with the equal size of the flagella and their comparative persistency of contour, serves to distinguish them from *Zygoselmis*, with which they otherwise to a considerable extent agree.

Body persistent in shape, subpyriform, widest and rounded posteriorly, pointed anteriorly and slightly curved towards the ventral aspect, about two and a half times as long as broad, surface smooth; flagella slender, vibratile, subequal, exceeding the body in length; oral aperture exceedingly elastic, conspicuous only during the passage of food; endoplasm finely granulate; endoplast spherical, subcentral; contractile vesicle posteriorly located. Length of body 1-1600".

HAB.—Infusions of hay in fresh and salt water.

This species was obtained by the author at St. Heliers, Jersey, in February 1878, in an infusion of hay in spring water on the eighth day of its maceration. For the next three or four days it constituted the most abundantly developed type, but at the end of this period it disappeared as suddenly as it came, and was not again seen in the infusion. A precisely identical animalcule was found in a contemporaneously prepared hay infusion in salt water on the eleventh day of its maceration, and was correspondingly fugacious. The habits of this species are eminently predatory, the greater portion of its time being spent in hunting down and devouring such other flagellate forms as may happen to be present. A few of them, enclosed in a glass slide with a crowd of *Heteromita lens*, *Monas fluida*, &c., were observed to rush in among these smaller animalcules where they congregated in zones near the margin of the glass cover, reappearing presently with a captured monad grasped by its sharply pointed distal extremity. Remaining motionless for a few seconds, this captured prey was gradually absorbed, a wide, elastic oral aperture, not previously visible, opening and expanding to receive it, and the chase being then renewed after other victims. In this manner five or six of the smaller monads were successively devoured in a very short space of time, and it was consequently not long before these weaker types succumbed and altogether disappeared before the aggressive inroads of the new intruders. Thus was illustrated in this humblest path of organic life the persistence and immutability of that law of the "survival of the fittest" now recognized as regulating the distribution of the most highly developed sentient beings, and upon which the welfare and stability even of nations is dependent. The movements of *Dinomonas vorax*, when not occupied in the pleasures of the chase, at which times it darts about hither and thither with great rapidity, consist of an even motion in a straight line, the snout-like anterior extremity being directed obliquely downwards, while the two flagella are vibrated actively in advance. In the younger and smaller examples, as shown at Pl. XXIV. Fig 46, the body is considerably narrower, or more attenuate in proportion to its length.

Dinomonas tuberculatus, S. K. Pl. XXIV. Figs. 43-45.

Body irregularly ovate, somewhat variable in form, but not metabolic, most usually more attenuate posteriorly, the ventral border flattened, the
dorsal one convex; endoplasm very clear and transparent, enclosing nodular corpuscles of irregular shape and size, many of these located on or close to the surface, and imparting to it a tuberculate aspect; flagella subequal, the anterior slightly the longer, exceeding the body in length; endoplasm spherical, subcentral; contractile vesicle posteriorly situated. Length of body 1–2500μ.

HAB.—Vegetable infusions in both salt and fresh water.

This form was obtained by the author in equal abundance in the hay infusions in both salt and fresh water productive of the preceding type. It is worthy of remark, however, that while in the salt-water infusion this species preceded *D. vorax* by a few days in its advent, the reverse happened in the case of the fresh-water one. Although in their predacious habits, and in the manner of chasing and incepting their food, the two species closely correspond with each other, their external appearances are altogether diverse. The smooth, persistent, subpyriform shape of the variety last described is here replaced by a contour which, while more frequently irregularly ovate, with a slightly pointed posterior extremity, as represented at Pl. XXIV. Figs. 44 and 45, may in other instances be produced at this region into a long tail-like process, as shown at Fig. 43, which communicates to it a singular rat-like contour. On the other hand, it not unfrequently assumes an almost perfectly spheroidal shape. The habits of this species appear to be slightly more omnivorous than those of *Dinomonas vorax*, for in addition to its ordinary diet of smaller monads, which are seized and swallowed in a manner similar to that already related of the last-named type, long bacillar-like filaments, as shown at Fig. 45, are not unfrequently ingested. Multiplication by longitudinal fission was observed on several occasions, as likewise the formation of spherical encystments.

Fam. VII. CHILOMONADIDÆ, S. K.

Animalcules free-swimming or temporarily adherent, illoricate; oral aperture conspicuously developed, communicating to the anterior border a bilabiate or excavate appearance; flagella two in number, both vibratile or undulating in the natatory state, but one of them coiled upon itself when the zooid is at rest, adherent through a greater or less portion of its length, and used for the purpose of temporarily anchoring it to submerged objects; endoplasm transparent, granular; no eye-like pigment-spot. Inhabiting salt and fresh water.

The most important distinction of this family group as here defined, is afforded by the anchoring faculty possessed by one of the two flagella, this feature to some extent approximating it toward the Anisonemidæ next described. In none of the representatives of this last-named group, however, does the anchoring flagellum exhibit that characteristic coiled contour so conspicuous in the present instance. Furthermore, the anchoring flagellum in *Chilomonas* and its allies is vibratile and subservient to the purpose of locomotion, in place of being trailed motionlessly in the rear, as obtains among the succeeding group. A modification of the flagella, in which loop-like coils for the purpose of attachment are developed at the base of each appendage, has been already recorded in connection with the genus *Polytoma*.

Genus I. CHILOMONAS, Ehrenberg.

Animalcules free-swimming, ovate or elongate, not metabolic but plastic and subject to considerable alteration in form, the anterior extremity obliquely truncate, projecting superiorly, and presenting the aspect of a
prominent upper lip; oral aperture distinct, opening on the anterior truncate border, followed by a conspicuous pharyngeal tract; flagella two in number, subequal, both vibratile, the one spirally coiled and anchoring the animal-cule to submerged objects when at rest; contractile vesicle usually at the anterior extremity; endoplast conspicuous; increasing by longitudinal fission. Inhabiting salt and fresh water.

By the earlier investigators it was left as a matter of considerable doubt whether the members of this genus possessed a single flagellate organ only, or two of these appendages; Ehrenberg favouring the latter and Dujardin the former of these alternatives. More recent investigation has established the accuracy of Ehrenberg's anticipation. Diesing, premising that the animalcule described by these respective authorities under the title of *Chilomonas paramaecum* included two distinct types, has proposed to separate Dujardin's supposed monoflagellate variety under the title of *Plagiomastix*, associating with it the doubtful *Chilomonas obliqua* of the same writer and the *Pleuromonas jaculans* of Perty. Such a generic group, however, based upon Dujardin's misinterpretation of the characters of the flagella, has no just claim for recognition. Perty's *Pleuromonas jaculans*, on the other hand, is an entirely distinct infusorial form. As now known, the representatives of the genus *Chilomonas* correspond remarkably in general contour with those of *Cryptomonas*, previously described, and are to be distinguished from them only by the absence of the lateral pigment-bands which so conspicuously characterize that generic form, in common with all the other members of the Chrysomonadidae.

Chilomonas paramaecum, Ehr. Pl. XXIV. Figs. 51 and 52.

Body plastic, elongate-ovate, about two and a half times as long as broad, widest anteriorly, tapering to a rounded point posteriorly, and usually curved slightly towards the dorsal aspect; cuticular surface smooth; endoplasm transparent, colourless, enclosing numerous large spheroidal corpuscles; anterior border obliquely truncate, oral aperture situated in the centre of this border; the two flagella inserted at the apical extremity immediately beneath the lip-like prominence, subequal in size, not so long as the body; pharyngeal tract narrow and elongate, continuous with the central axis of the body through nearly half its length, finely striate longitudinally; contractile vesicle situated at a little distance from the margin of the lip-like frontal prominence; endoplast spherical, located at a distance of one-third of the entire length of the body from the posterior extremity. Length 1−1125" to 1−650". HAB.—Vegetable infusions.

O. Bätschli * regards this species as identical with both the *Chilomonas granulosa* and *Zygoselmis nebulosa* of Dujardin, and further proposes to unite with it the animalcule next described under the name of *Chilomonas cylindrica*. That the last-named form is, however, essentially distinct is presently demonstrated, while *Zygoselmis*, as already shown, belongs to a separate family group. The species now under consideration occurs abundantly in vegetable infusions, and yields many points of interest. Treated with acetic acid, Bätschli found that the animalcules threw out on every side ray-like prolongations mingled with minute granular bodies whose nature would seem most closely to approach the trichocysts of the higher Ciliata. He was however unable to detect any trace of these structures in the living individuals. When isolated on a glass slide for investigation the animalcules quickly lose their normal contour, become more and more spherical, finally bursting and breaking up. Increase by

longitudinal fission was frequently observed. The two flagella of this species, when the animalcule is at rest, are described by Bütschli as being folded loosely across one another, as represented at Pl. XXIV. Fig. 51.

Quite recently (August 1879), the author has had an opportunity of examining this animalcule, and while able to confirm Bütschli's more general account of its structure, has elicited certain data concerning the comportment and insertion of the flagella that have necessitated a slight modification of the diagnosis previously prepared. In no instance was it made clear that these organs were inserted otherwise than close to one another, immediately beneath the lip-like prominence, while at the same time the lower of the two, when the animalcule was at rest, was thrown into a loose spiral coil in the same manner as the homologous appendage of the genus *Oxyrrhis*, and being used in a similar manner as an organ of attachment. A turn of this coil, issuing from behind the profile of the animalcule, often presented the appearance of a distinct and separately inserted flagellum, and it is probably upon such a deceptive optical aspect that Bütschli has based his interpretation of the remote insertion of the flagella in this species. In addition to the likeness to *Oxyrrhis*, conveyed by the convolute disposition of the flagellum in question, the movements of *Chilomonas paramaecium* in the water accord to a considerable extent with those of the last-named type. These consist, in a similar way, of an intensely active condition in which the animalcule rushes to and fro, though with the anterior end foremost, at a speed too rapid almost for the eye to follow, while at the next moment it comes as it were abruptly to anchor, with its body perfectly quiescent and one flagellum thrown into a coil and adherent to the glass slide or covering glass, while the other maintains a vibratory motion.

The figures of this species included in Stein's recently published volume* accord substantially with those given by O. Bütschli, his interpretation of the insertion of the flagella, however, being identical with that maintained by the present author.

Chilomonas cylindrica, Ehr. sp. Pl. XXIV. Fig. 50.

Body moderately persistent in form, elongate, subcylindrical, straight, about three and a half times as long as broad; endoplasm yellowish-brown, enclosing irregularly scattered granules; anterior border obliquely emarginate; the oral aperture excentral, continuous with a short, wide reticulate pharyngeal tract, which extends backwards along the ventral margin to about one-quarter of the entire length of the body; the two flagella inserted close to one another above the oral aperture; contractile vesicle situated immediately above the pharyngeal passage; endoplasm spherical, located at a short distance from the posterior extremity. Length of body 1–500", and less.

Hab.—Pond water, and amongst decaying vegetation.

This species would appear to be synonymous with the *Cryptomonas cylindrica* of Ehrenberg and the *Cryptomonas polymorpha*, in part, of Perty, though, as already intimated, Bütschli has figured and described it as a variety only of *Chilomonas paramaecium*. Setting aside details of external contour, which are subject to variation, the structural characteristics of the two are, however, essentially distinct. The position of the oral aperture in this species is eccentric instead of central, the pharyngeal tract follows the same eccentric course and is much shorter and wider. The substance of the endoplasm of the two is likewise distinct, the symmetrically granular pattern being replaced in the present form by a yellow coloured stroma described by Bütschli as consisting of two even parallel layers continuous throughout the body and separated from one another by a clear linear interspace; this circumstance,

* Infusionsthiere,* Abth. iii. Heft i., 1878.
Indeed, seems almost to justify the transference of this specific type to the genus *Cryptomonas*. The trichocyst-like structures are apparently confined entirely to *C. paramecium*, and are probably associated with the symmetrically arranged granular bodies just referred to. It has further to be remarked that the two do not occur together, the present form being obtained mostly in ponds and standing water, and the one previously described in artificial infusions. The sizes of the two animalcules are likewise too divergent to support the opinion of their identity.

Chilomonas amygdalum, S. K. PL. XXIV. FIG. 49.

Body elongate-ovate, almond-shaped, somewhat curved towards the ventral aspect, from three to four times as long as broad; flagella sub-equal, exceeding the body in length; endoplasm transparent, granular. Length 1–2000". HAB.—Salt water.

This species was obtained abundantly by the author at St. Heliers, Jersey, in November 1878, in the sea-water containing decaying sea-weed productive of *Trinema marina*, previously described. Its movements when swimming are very active and restless, mostly rotatory, the animalcules being further observed to chase and feed voraciously, after the manner of *Dinomonas*, upon the vibrions and smaller monads contained in the same water. When at rest it anchored itself by a spiral coil of the posterior of the two flagella, as recorded of *C. paramecium*. Multiplication by longitudinal fission, similar to that which obtains in the last-named type, was frequently witnessed.

Genus II. Oxyrrhis, Dujardin.

Animalcules free-swimming, persistent in form, ovate or conical, obliquely and unevenly emarginate or excavate anteriorly; flagella two in number, inserted close to each other within the frontal emargination, one of them entirely vibratile, the other coiled spirally and used as an organ of attachment during a state of quiescence, lashed to and fro and driving the animalcule backwards through the water during natation; oral aperture situated in the frontal emargination close to the insertion of the flagellum; endoplasm transparent. Inhabiting sea water.

There can be but little doubt that the *Glyphidium marinum* of Fresenius* and Cohn† is generically if not specifically identical with the species previously introduced by Dujardin under the title of *Oxyrrhis marina*, and which earlier conferred generic title, in accordance with the laws of zoological nomenclature, must necessarily take precedence of the later one. The affinities of this generic type, in consequence of the hitherto imperfect knowledge of its structural details, have not as yet been so much as indicated, but from what is now known of this and other Flagellata its relationship to *Chilomonas*, last described, is clearly evident. Two species belonging to that genus, *C. paramecium* and *C. amygdalum*, have been ascertained by the author to present a closely corresponding coiled arrangement of the inferior flagellum; while in both, the smaller notch-like anterior oral emargination may be regarded as identical with the larger and asymmetrical one of *Oxyrrhis*. A chief difficulty hitherto pertaining to the correct interpretation of this animalcule relates to the inability of previous writers, Dujardin excepted, to recognize in the smooth rounded extremity, the posterior region, and in the obliquely emarginate one the anterior one, the true import of these being entirely masked in consequence of the remark-

* 'Die Infusorien des Seewasseraquarium der Zoologische Gärten, Frankfurt,' 1865.
† 'Neue Infusorien in Seeaquarium,' 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xvi., 1866.
able retrogressive motions of the species in its more active state. No one, nevertheless, would dream, on similar grounds, of correlating with the tail end of a cuttlefish or lobster the functions of a cephalic region, simply because that extremity is directed foremost during natation.

In connection with the retrogressive motions of *Oxyrrhis*, it is worthy of remark that it is the only free-swimming infusorial type, at present known, in which a flagellate appendage serves, as in that of a spermatozoon or a Bacterium, the purpose of propelling in place of drawing the body through the water. Professor E. Ray Lankester (see Family *Anisonemidae*) has proposed to confer upon such an organ of propulsion the distinctive title of a "pulsellum."

Body conical or helmet-shaped, subcylindrical, rounded posteriorly, the anterior margin obliquely and unsymmetrically notched or emarginate, the notch being produced further backwards on the left side, the superior angle of the same region more or less conically prolonged; flagella long and slender, issuing from the posterior extremity of the oblique frontal emargination; oral aperture elastic, capable of incepting food-particles of considerable size; endoplasm transparent, enclosing food-globules and vacuolar spaces, its external surface smooth; contractile vesicle anteriorly located.

Length of body 1–900" to 1–500". HAB.—Salt water.

The original description of this species, as given by Dujardin* and herewith reproduced in abstract, appears at first sight scarcely reconcilable with the type indicated in the foregoing diagnosis.

"Body colourless, subcylindrical, rounded posteriorly, the anterior border emarginate, produced superiorly into a long, conical point, external surface rugose; flagella three or four in number, produced laterally from the bottom of the anterior emargination. Length 1–500". HAB.—Salt water."

The species, as above described, was obtained by Dujardin in salt water from the Mediterranean containing *Ulva*, which had been kept standing for many months. The considerable number of flagellate appendages accredited to the type by its discoverer, and as delineated in his original illustration of the type, reproduced at Pl. XXIV. Fig. 53, constitutes a feature of distinction which would appear to establish the claim of the present form to a separate specific or even generic title. It is evident, however, that Dujardin's presumed three or four flagella represent only the optical aspect of the two appendages now shown to exist, when thrown into their characteristic convolutions, as presently described. The irregular rugosity of the external surface of the body, again attested to in Dujardin's diagnosis, and as evidenced by his accompanying illustrations, coincides with the appearance merely of the miscellaneous mass of food-material usually accumulated within it. A more detailed account of the results of the author's investigation of this flagellate form, as examined in abundance at St. Heliers, Jersey, both in water brought direct from the sea and in long-standing hay infusions compounded with the same medium, may now be proceeded with.

It was not until examples had been killed with the aid of osmic acid and submitted to a magnification of 800 diameters, that the precise number and character of the flagellate appendages, as here recorded, were accurately determined. Under these auspices it was shown that these were two in number, similar in character,

slender throughout, and equal to from one and a half to twice the length of the body in their completely extended state, which they usually assumed under the influence of this reagent. Aided by the experience of a post mortem examination, it was not so difficult to recognize their character and relative position in the living examples. In the more easily examined stationary condition one of these flagella, which may be termed the superior one, is thrown backwards in an arcuate fashion over the dorsal border. The second or inferior flagellum meanwhile remains coiled in a spiral form close against the entrance to the oral aperture, and with its distal extremity only protruding and attached to the surface of the slide or cover-glass. Vibratory action, serving the purpose of entrapping food, belongs apparently, chiefly if not exclusively, to the first-named appendage, which usually during the sedentary condition exhibits rapid vibratile movements throughout its distal region. These vibratory motions, combined with the convolute disposition assumed by both flagella, frequently impart to the animalcule an appearance of possessing several shorter filaments, and thus invalidate the interpretation originally connected with the number of these appendages as given by Dujardin. When swimming actively from one spot to another, or rushing about as it is accustomed to do when disturbed, the animalcule is driven backwards through the water by means of the flagellum that remains comparatively inactive and affixed to the ground during the stationary condition, but which is now stretched out anteriorly to its full extent and vigorously lashed from side to side, causing the body to rotate upon its axis alternately from right to left and left to right as motion in a backward direction is effected. The primary or vibratile flagellum during natation appears to be coiled still more closely and completely within the pre-oral excavation. Particles of carmine were eagerly incepted by the specimens under examination, their favourite food being however the various smaller monads and algae spores contained abundantly in the same infusion, and which were brought within reach during the sedentary condition of the animalcule by the rapid vibratory motions of the primary flagellum. These, though nearly equal in diameter to their own bodies, were swallowed whole, the loop-like convolutions of the basal portion of the inferior flagellum apparently aiding in pushing these food-substances into the oral cavity. Various vacuolar spaces and more solid spherical bodies were frequently observed within the otherwise clear endoplasmic substance, one of the former towards the anterior extremity and immediately above the oral excavation representing apparently the contractile vesicle, its pulsatory properties not however being very vigorously manifested. During life, and for a considerable time after death by a natural process, the external cuticle of this animalcule appears to possess a considerable amount of rigidity, being often found, indeed, in the latter case as a mere shell devoid of all trace of the endoplasm and flagellate appendages, and exhibiting under such conditions, as shown at Pl. XXIV. Figs. 58 and 59, a sharp and clear outline of its peculiar unsymmetrically angular form. Under the treatment of dilute osmic acid the entire body however rapidly disintegrates, first assuming a rounded or spherical outline and then, as it were, melting gradually away. Increase by transverse fission, Fig. 57, is the only form of reproduction as yet positively ascertained to occur.

As already intimated, the *Glyphidium marinum* of Fresenius is beyond doubt identical with the present species. The examples referred to this type, figured by Cohn, also entirely harmonize with the form here introduced, excepting that the body is slightly shorter in proportion to the width and more evenly rounded posteriorly. The character of the flagella, while more accurately appreciated by Fresenius, is not fully elicited by either of these authorities; in some instances two flagella are figured, but in others a single one only is represented. The oral aperture is further described and figured by Cohn (see Pl. XXIV. Fig. 29) as apparently supplemented by a projecting, undulating, lip-like membrane, such structure being here readily identified with the optical aspect only of the loop-like convolution of the inferior flagellum.
ORDER FLAGELLATA-EUSTOMATA.

Fam. VIII. ANISONEMIDÆ, S. K.

Animalcules ovate or elongate, free-swimming or temporarily adherent; flagella two in number, the anterior one or "tractellum" locomotive and vibratile, the posterior one or "gubernaculum" used for steering or trailed inactively in the rear during natation, adherent or anchorate by its posterior extremity in the sedentary condition; oral aperture distinct, mostly associated with a well-defined tubular pharynx; endoplasm transparent, granular. Inhabiting salt and fresh water.

The representatives of this well-defined family group exhibit a type of structure and habits of life strictly analogous to those already recounted of the Heteromitidae, the one highly important differential feature being that a well-defined and often complex oral apparatus takes the place of the indefinite and dispersed inceptive area characteristic of that family. This oral apparatus in certain members of the Anisonemidae is so complex as to approach the formula typical of Nassula and various other Holotrichous and Hypotrichous Ciliata, and there can be little doubt that these animalcules must be regarded as occupying the foremost position among the Stomatode Flagellata. A further development of the Anisonematous structural type towards the Ciliate division of the Infusoria is afforded by Professor Clark's genus Heteromastix, hereafter described, and in which an adoral fringe of cilia is added to the two flagella.

The peculiar modification of the Flagellate appendages of the Anisonemidae, shared likewise by the Pantostomatous Heteromitidae, see p. 290, and the Cilio-flagellate type Heteromastix just quoted, invites more extended attention. The desirability of introducing a suitable term for the distinction of the posterior or trailing flagellum used for the purpose of temporarily anchoring the animalcule to submerged objects, or rudder-wise for the guidance of its course during natation in these various types, was first recognized by Professor H. James-Clark,* who proposed to distinguish such appendage by the appropriate title of a "gubernaculum." Irrespective of the distinction just alluded to, it has been more recently pointed out by Professor E. Ray Lankester † that even among uniflagellate organisms the single flagellum may exercise two totally distinct functions, and merits in each case a separate appellation. Thus, among all ordinary Flagellata such as Monas, Euglena, and Astasia, the vibratory motion of the single flagellum draws the animalcule after it through the water. The appendage possessing such a tractive function Professor Lankester has proposed to distinguish by the title of a "tractellum." In other flagellate organisms, as illustrated most familiarly by ordinary spermatozoa and Bacteria, the filamentous appendage or appendages fulfils an entirely opposite mission, its motions propelling the body in front of it through the liquid medium. Where it thus acts as an organ of propulsion the authority last quoted confers upon it the name of a "pulsellum." Among the free-swimming monoflagellate Infusoria as at present known, where the locomotive appendage without exception fulfils during natation the rôle of a tractellum, its recognition by such title in contradistinction to a propelling organ or pulsellum is uncalled for. With the biflagellate types, however, exhibiting a differentiation of their two appendages corresponding with that presented by the group now under consideration, Professor Lankester's term as applied to the anterior locomotive flagellum, and as distinctive of the trailing flagellum or gubernaculum of Professor Clark, becomes highly useful, and is here unhesitatingly adopted.

An exceptional instance among the Dimastigous Flagellata, in which one appendage acts as a pulsellum or organ of propulsion, is afforded by Oxyrrhis marina, described at pp. 427 and 428. Artificially detached zooids of the

* 'Memoirs of the Boston Society of Natural History,' 1878.
† Biological Lectures, University College, London, 1876.
normally sedentary collared monads *Codosiga, Salpingacea, &c.*, have likewise been observed by the author to exhibit retrogressive natatory movements, a circumstance which might indeed be consistently predicated in connection with the motion of the flagellum and the direction of the current it engenders, as described at length at p. 327.

Genus I. Heteronema, Dujardin.

Animalcules free-swimming, ovate or elongate, highly elastic and metabolic; flagella two in number, produced from the anterior extremity, the one vibratile, the other trailing and adherent; oral aperture distinct, situated close to the base of the flagella, usually followed by a well-defined pharyngeal tract; endoplasm transparent, granular. Inhabiting salt and fresh water.

As originally instituted by Dujardin, the genus *Heteronema* included but one imperfectly defined specific type, *H. marina*, which has been usually regarded as exhibiting too close a resemblance to *Anisonema or Heteromita* to merit independent recognition. Two other well-defined specific forms are added to this genus by Stein in his recently published volume which, while conforming with Dujardin's original definition, manifest their distinctness from *Anisonema, Heteromita*, and other superficially corresponding genera in their extreme mutability of form, or in other words highly metabolic character.

Heteronema acus, Ehr. sp. Pl. XXIV. Figs. 14 and 15.

Body in extension attenuate fusiform, widest a little behind the centre, tapering towards and sharply pointed at each extremity, eight or ten times as long as broad; flagella slender, unequal, the anterior one, or tractellum, extended rigidly in advance, equalling the body in length, the trailing one, or gubernaculum, about half that length; contractile vesicle situated close to the anterior extremity; a large, oval, endoplasm-like structure in the centre of the widest portion of the body; endoplasm finely granulate. Length of body 1-600" to 1-300".

Hab.—Fresh water: Europe and Bombay.

The form as defined in the foregoing diagnosis and accompanying illustrations, is identified by Stein with the *Astasia acus* of Ehrenberg, and referred to its present rightful position. An animalcule presenting a precisely similar external contour and metabolic properties, is likewise figured as "an Astasia with two filaments" in one of the note-books kindly placed at the author's disposal by Mr. H. J. Carter, such animalcule having been encountered by that authority at Bombay in the year 1856. In one of the delineations made by Mr. Carter its body is so contracted upon itself that the diameter considerably exceeds the total length, the two anterior and posterior extremities projecting as mere points from the flattened and almost discoidal central region of the body. A similar turbinate or rotulate shape is commonly exhibited among the multitude of protean configurations presented by *Euglena* and *Astasia*, or by the isomorphic Cilio-Flagellate genus *Heteromastix*.

Heteronema globuliferum, Ehr. sp. Pl. XXIV. Figs. 16 and 17.

Body highly metabolic and changeable in shape, mostly elongate-ovate or pyriform when extended, with a truncate or rounded posterior, and a narrower pointed anterior extremity, two or three times as long as broad;
vibratile flagellum, or tractellum, about twice the length of the body in full extension, the trailing one, or gubernaculum, shorter and more slender; oral aperture distinct, continued as a long, tubular pharynx; endoplasm transparent, granular; cuticular surface sometimes faintly striate obliquely; contractile vesicle situated close to the termination of the pharyngeal tube; endoplasm oval, subcentral. Length 1–650". HAB.—Fresh water.

The species associated by Stein with the above title is identified by that authority with the Trachelius globulus of Ehrenberg and the Peranema globulosa of Dujardin. A form, however, more precisely according with the last-named type as examined by the author has been demonstrated, as recorded at page 225, to be a developmental phase only of the Heliozoon, Actinophrys sol.

Heteronema marina, Duj.

Body oblong, irregularly inflated posteriorly, narrower at the anterior extremity, about twice as long as broad; cuticular surface obliquely striate; vibratile flagellum slender, equalling the body in length, trailing one much thicker and longer. Length 1–420". HAB.—Salt water.

This species was obtained by Dujardin from sea-water at Cette that had been kept standing for a fortnight.

Heteronema pusillum, Perty sp.

Body transparent, very elastic and changeable in shape, subglobose, ovate, or elongate-pyriiform at will, mostly the latter; the two flagella developed from the apex of the more usually pointed anterior extremity, very long and slender, the anterior one two or three times the length of the body, the trailing one rather shorter. Length 1–840" to 1–768". Movements straight forward, oscillating. HAB.—Fresh water.

This species, described by Perty under the title of Dinema pusillum, is referred with some doubt to the present genus, being not improbably a Heteromita.

Genus II. Diplomastix, S.K.

Animalcules ovate or elongate, free-swimming or temporarily adherent, plastic and variable in form, but not metabolic; flagella two in number, one vibratile, the other trailing and adherent; oral aperture well defined, situated at the base of the flagella; endoplasm colourless. Inhabiting salt and fresh water.

This new generic title is necessarily instituted for the distinction of those Anisonematus forms holding an intermediate position between Anisonema and Heteronema. This is manifested by their possession of an ectoplasmic layer, which while sufficiently soft and plastic as to permit the animalcules to assume slowly and under special conditions diverse individual contours, never exhibits that high degree of elasticity and contractility productive of rapid and protean changes of contour as met with in the last-named generic type. On the other hand, it is never so firm and indurated as obtains in Anisonema. Two of the species here described have been recently referred by Stein to the genus Bodo of Ehrenberg, but evidently possess nothing in common with the representatives of that generic group as recognized in this volume or associated with that title by most recent authorities.
Diplomastix caudata, Duj. sp. Pl. XXIV. Figs. 1-10.

Body variable in form, gibbously ovate, sometimes rounded, but more usually tapering and bent obliquely upwards posteriorly, the anterior extremity sharply pointed or rostrate, curved towards the ventral aspect; flagella slender, subequal, exceeding the body in length, inserted close to each other at the apex of the rostrate process; contractile vesicle located near the anterior extremity; endoplasm subcentral; endoplasm transparent, finely granular. Length 1–1500" to 1–500".

HAB.—Pond water and organic infusions in both salt and fresh water.

This species is figured without an accompanying description, in Stein's recent volume,* under the title of Bodo caudata Stein, and with the associated synonym of Amphimonas caudata of Dujardin, a type again which is regarded by this last-named authority as probably identical with the Bodo saltans of Ehrenberg. The present author agrees with Stein in the recognition of this Ehrenbergian species as a totally distinct form, and has arrived at the conclusion that there are no less than three specific types closely resembling in general aspect the one now under consideration, but which exhibit under more minute examination easily apprehended distinctive features. All of these occur abundantly in hay and other vegetable infusions, and have recently formed the subject of special investigation. The present type, _D. caudata_, may be at once recognized by its larger size and movements in the water, which consist chiefly of steady progress forwards in a straight line for a more or less considerable distance, the rostrum directed downwards and rooting as it were among the organic debris, while the body sways to and fro with a rapid vacillating or hitching action, such mode of locomotion is quite distinct from the leaping or constantly reversed or tacking motion of the two smaller types next described under the titles of Diplomastix affinis and _D. saltans_. Compared with this last-named form, the contractile vesicle is also found to occupy an exactly inverse position.

The more conspicuous individual diversities of contour exhibited by the present species are amply illustrated in the accompanying figures; it is at the same time worthy of remark that the author has found the shorter and posteriorly rounded shape, Pl. XXII. Fig. 1, connected always with the earliest appearance of this form, the more or less attenuate caudal prolongation, as shown at Figs. 2 and 3, not making its appearance until the third or fourth day after the advent of the animalcule in any quantity upon the field. This attenuate extension of the posterior extremity would seem in the present type to take the place of the more irregular pseudopodic processes, emitted mostly from the same region, in many Pantostomatous forms antecedent to the act of coalescence or encystment. Both of these phenomena have been abundantly observed, as also the breaking up of the encysted zooids into four or eight oval macrospores which shortly develop flagella and assume the form and characteristic movements of their parents. It was also found that the macrospores so produced were plentifully developed on the dried hay when first placed to macerate (see Pl. XI. Fig. 2 c), lying scattered in little heaps, without any common investing envelope, among the ridges and sinuosities of the surface of the separate blades or stalks. The motile zooids derived from these spores did not make their appearance until the fourth day of maceration, and remained then for upwards of a month as one of the most abundantly represented types in the infusion, sometimes crowding the field of view to the exclusion of all other forms.

By Stein this animalcule is figured as possessing a distinct tubular oral aperture situated immediately beneath the recurved rostrum. Although the inception of food was observed at this point, the author has not yet succeeded in detecting any

* 'Infusionsthiere,' Abth. iii., 1878.
such permanently visible aperture. According to this last-named authority this type would seem also to possess the same predatory habits as Cieknowski’s monoflagellate genus Colpodella, he in certain of his figures representing examples extracting and swallowing the nutrient protoplasm of a species of Chlamydomonas, while in another instance as many as eight animalcules have fastened to and are feasting, like so many rats, upon the body of a large Colpoda cucullatus. The example figured by Stein as illustrating one zooid preying in a similar manner upon another individual of its own species, is evidently a misinterpretation of the first stage of coalescence or genetic union, in which, as frequently observed by the author, see Pl. XXIV. Fig. 4, one animalcule fixes itself by its rostrum to the dorsal region of its selected mate, the substance of the two becoming gradually amalgamated. Although obtained in hay-infusions simultaneously prepared from both salt and fresh water, it was found by the author to develop far more abundantly in the latter medium.

Diplomastix caudata may be said to be one of the most ubiquitous representatives of the Flagellate series, it putting in its appearance wherever decaying organic matter, animal or vegetable, may be found.

Diplomastix affinis, S. K. Pl. XXIV. Fig. 13.

Body gibbously ovate, the posterior extremity rounded, or pointed and bent towards the ventral aspect, the anterior end rostrate and recurved in the same direction; flagella of uniform size, slender, exceeding the body in length; contractile vesicle single, posteriorly situated; endoplast spherical, subcentral. Length 1–1500” to 1–1200”.

HAB.—Hay-infusions in salt and fresh water.

The smaller size, persistent ventral curvature of the posterior extremity, and location of the contractile vesicle, serve to distinguish this species from the preceding, to which may be added the still more easily recognized and distinct mode of locomotion. In *D. caudata* this, as already described, consists chiefly of progress through the water in a straight line for a considerable distance, accompanied by a peculiar vacillating or hitching gait; a similar vacillating action is noticeable in the present type, but the animalcule never maintains its straight course for a long distance, it bringing itself up suddenly and with a jerking motion every few seconds through the adhesion of the trailing flagellum or gubernaculum, and then starting off, like a ship tacking, in a different direction. Frequently also it remains anchored by its gubernaculum, and fishes steadily with its extended anterior flagellum or tractellum after the manner of an ordinary Heteromita or Anisonema. This sedentary phase has not so far been observed in *D. caudata*. Developmental phenomena similar to those recorded of the last-named species were observed of the present type, and it was further found that it multiplied with equal rapidity in hay-infusions in both fresh and salt water.

Diplomastix saltans, Ehr. sp. Pl. XXIV. Figs. 11 and 12.

Body irregularly ovate, rounded posteriorly, with a convex dorsal and concave ventral surface, the anterior extremity pointed, more or less curved, often presenting a notched or bilabiate aspect; the trailing appendage, or gubernaculum, longer and stouter than the vibratile flagellum, or tractellum, nearly twice the length of the body, the two inserted at some little distance from the anterior extremity; contractile vesicles two in number, anteriorly situated; endoplast subcentral. Length 1–1600” to 1–900”.

HAB.—Vegetable infusions.

This species is distinguished from the preceding by the notched or bilabiate contour of the anterior extremity and by the more posterior insertion of the flagella,
Its habits are mostly sedentary, the animalcules remaining attached or anchored in social clusters by the temporary adhesion of their gubernacula, and briskly springing to and fro to the full length of their "tether" in various directions. By Ehrenberg this species was first described under the title of Bodo saltans, the same name accompanying the illustrations which alone are given in Stein's recently issued work.

Genus III. ANISONEMA, Dujardin.

Animalcules ovate, free-swimming or temporarily attached, persistent in form, having a more or less indurated cuticular investment; oral aperture distinct, usually followed by a well-defined pharyngeal tract; anal aperture postero-terminal; flagellate appendages two in number, of diverse function, originating close to one another on the ventral surface, the anterior filament, or tractellum, extended in advance, vibratile, subserving the purposes of locomotion and the capture of food, the posterior flagellum, or gubernaculum, trailing in the rear, distally adherent, non-vibratile, utilized during natation as a rudder and also for temporarily attaching the animalcule, cable-wise, to foreign objects; contractile vesicles and endoplasm conspicuously developed; multiplying by longitudinal fission, and by the production of internal germ-masses. Inhabiting fresh and salt water, and infusions.

By many recent writers it has been proposed to merge both Heteromita and Heteronema in the present genus, upon the supposition that the softer consistence of the external envelope and contained body-substance in these types represents merely a slightly more marked difference of degree, insufficient for the purposes of generic diagnosis. As demonstrated, however, on a previous page, Heteromita is a perfectly distinct, though isomorphic form, of much lower organization, having no distinct oral aperture, and belonging necessarily to the same Pantostomatous primary group as Monas, Spumella, and Anthophysa. Heteronema, on the other hand, manifests its distinctness from the present genus by the extreme plasticity of its cuticular investment and extraordinary metabolic properties. Evidence supporting the opinion that the members of the genus Anisonema possessed a distinct oral aperture was first adduced by Professor H. James-Clark * who, while unable to demonstrate the exact position of this aperture in A. grande, distinctly saw food-particles pass in at the anterior extremity. This authority likewise suspected the existence of an anal aperture at the posterior end of the body, such anticipation being entirely confirmed by the investigations of the present author, which are again further corroborated by Stein. The determination of the precise position and structure of the oral aperture, with its accompanying well-defined pharyngeal tract, has been recently accomplished by both Stein and O. Bütschli.

Anisonema grande, Ehr. sp. Pl. XXIV. Figs. 26–30.

Body ovate or oblong, depressed, the dorsal surface slightly convex, the ventral one flat, or more or less concave, rounded posteriorly, narrower and pointed anteriorly, about twice as long as broad; cuticular investment smooth and indurated; flagella originating at a little distance from one another close to the anterior extremity, the anterior vibratile flagellum, or tractellum, slender, scarcely equalling the body in length, the trailing flagellum, or gubernaculum, three or four times the length of the other,

usually considerably thicker towards the base; oral aperture adjacent to
the origin of the posterior flagellum, communicating with a short, tubular
pharyngeal tract; contractile vesicle single, situated behind or a little to
the left of the oral aperture; endoplasm spherical or ovate, located on the
right-hand side towards the posterior extremity. Length 1-125° to 1-90°.

HAB.—Pond water, amongst Conferae.

This typical species of the genus, more generally known by Dujardin's name of
Anisonema acinus, and recently figured and described by Professor Clark as Anisonema
cconcavum, is identified by Stein with the Bodo grandis of Ehrenberg, whose primarily
conferred specific title necessarily takes the precedence of all others. The motions
of this animalcule in the water, typifying also those of the genus generally, are very
characteristic, but at the same time closely resemble those of the ordinary members
of the genus Heteromita previously described. Progress through the water consists
chiefly of a smooth, gliding motion in a straight line, the shorter anterior flagellum,
or tractellum, being projected and vibrating in advance, while the long posterior one,
or gubernaculum, as it is designated by Professor Clark, trails cable-wise, like a
boat dragging its anchor, in the rear. This even locomotion is occasionally varied
by a laborious hitching gait, accompanied by a swinging of the animalcule from
side to side, while now and then the body is brought up sharply and propelled in
an opposite direction, through the adhesion to the ground, and simultaneous
loosely spiral contraction, of the trailing gubernaculum. The locality proving
auspicious and the food-supply plentiful, the little animalcule often fixes itself by
the distal extremity of the last-named organ and rides gracefully at anchor, fishing
vigorously with its extended tractellum, detaching itself after a short interval, and
progressing as before in search of a new pasture-ground.

The aspect of this species as seen in profile is subject to considerable variation
according to the point of view taken, and in consequence of the asymmetrical
development of the ventral excavation. Its most characteristic concavo-convex or
menisoid contour is best illustrated when seen end-on from behind, as represented
at Pl. XXIV. Fig. 26. The ventral excavation, so conspicuous under these con-
ditions, is shown to be abruptly and obliquely deepened on its left-hand border,
which thus appears to be recurved over it, while it narrows off gradually on the
right-hand one. It is this character of the ventral furrow that imparts to the
animalcule a menisoid contour as seen only from the right-hand side, a view from
the opposite or left-hand one yielding the simpler plano-convex shape that has been
more frequently ascribed to it. As shown by Bütschi, individuals vary somewhat
in their dorsal contour, the ovate or "pip-shaped" outline being sometimes
replaced by a shorter, broader, and almost elliptical form. Increase by longitudinal
fission has been observed in this species by various investigators, the two flagella
destined for the new zooid often being developed at the anterior extremity of the
primary individuals prior to the commencement of the dividing process. At
this stage, Pl. XXIV. Fig. 27, the animalcule has the appearance of possessing
two or three vibratile anterior flagella, and a single or double trailing one. De
Fromentel,* supposing it to represent a new type, has figured and described this
transitional condition under the title of Diplomita insignis, while he confers that of
Heteromita crassa upon the ordinary biflagellate condition of the same animalcule.†
Stein, in his recently published volume,‡ represents the anteriorly located con-
tractile vesicle as having frequently a rosette-like aspect through the association of
smaller lateral lacunæ, and also the development, within the central endoplasm, of

* 'Études sur les Microzoaires,' Paris, 1876.
† This earlier though fruitless employment of the term Diplomita by De Fromentel had escaped
the author's attention when proposing the same title for the biflagellate animalcule described at
p. 289. It being desirable to substitute a new generic name for this altogether distinct form, that of
Diplomita is herewith given in exchange.
‡ 'Infusionsthiere,' Abh. iii., 1878.
two large ovate germ-masses, modified apparently from a single pre-existing endoplast. Illustrations of these special features as observed by Stein are reproduced at Figs. 28 and 29 of the accompanying plate. This more complex modification of the contractile vesicle, while of rare occurrence among the Flagellata, will be found to recur repeatedly with the more highly differentiated Ciliata described in the succeeding volume.

Anisonema truncatum, Stein. **Pl. XXIV. Figs. 24 and 25.**

Body elongate, obconical or subtriangular, widest and truncate anteriorly, tapering gradually towards the posterior extremity, rather over twice as long as broad; trailing flagellum about twice the length of the body, the vibratile one slender, not one-half as long as the preceding; parenchyma coarsely granular; contractile vesicle situated close to the termination of the short, tubular pharynx; endoplasm elongate ovate, located posteriorly near the left lateral border. Length 1–600". **HAB.**—Fresh water.

Anisonema ludibundum, S. K. **Pl. XXIV. Figs. 35 and 36.**

Body elliptical, very slightly depressed, somewhat narrower, but rounded at the anterior extremity, cuticular surface smooth; parenchyma transparent, granulate; flagella equally slender, about one and a half times the length of the body, inserted at some little distance from the anterior extremity; contractile vesicles two in number, located side by side above the point of insertion of the flagella; anal aperture distinct, postero-terminal. Length 1–2500". **HAB.**—Vegetable infusions, gregarious.

This species was obtained by the author in some abundance from a flower-vase in which the plants had been left until their stems were in an advanced state of decomposition. Viewed in profile the body is seen to be much thicker than either of the preceding species, from which it also differs in its considerably smaller size, in the possession of two conspicuous contractile vesicles, and in the more rearward insertion of the flagella. A number of animalcules were generally found in close proximity, attached by their gubernacula and vigorously fishing with their extended anterior flagella or tractella. Ever and anon a single individual would, in the course of its oscillations, come in contact with a neighbour, causing it to rebound against its fellows, stimulating those also into abnormal action; the whole colony thus aroused would whirl about for some seconds, apparently in sport with each other, and in a manner comparable to flies playing, or to that recorded further on of the Ciliate type *Cyclidium glaucum*. Effete granular matter was distinctly observed passing out at the posterior extremity of one of the zooids, as shown at Pl. XXIV. Fig. 35.

Anisonema intermedium, S. K. **Pl. XXIV. Figs. 37–39.**

Body oval, depressed, slightly narrower anteriorly, surface smooth; in lateral view thicker posteriorly, and gradually narrowing towards the anterior end; the ventral surface flat or slightly concave; flagella inserted close to the anterior extremity, equally slender, about twice the length of the body. Length 1–2000". **HAB.**—Sea water.

The contour of this animalcule as seen in profile, together with its minute size and salt-water habitat, appears to justify its recognition as a distinct species. A
GENUS ENTOSIPHON.

437

re refringent ovate body, apparently the endoplast, was detected in one example close to the centre of the left-hand border, and a clear vacuolar space near the posterior extremity, which may have been the contractile vesicle, and which would in that case be situated in a position precisely opposite to that of the previously described species. Mingled with the ordinary forms, smaller flattened ovate zooids, attached by the pointed anterior end by a long anchoring flagellum, and having as yet no second vibratile one, were observed; these, as delineated at Pl. XXIV. Fig. 38, apparently represented an earlier and larval condition of the adult individuals, though their growth to the same has yet to be determined. As shown in the account given of Heteromita rostrata and H. uncinita, a similar mono-flagellate larval condition obtains also in that isomorphic genus.

Anisonema (?) griseolum, Perty sp.

Body elongate-ovoid, twice as long as broad, narrower posteriorly; flagella equal, not much exceeding the body in length; endoplasm granular, greyish brown. Length 1-250".

Hab.—Fond water; movements slow, mostly rotatory.

This species, described and figured by Perty under the title of Dinema griseolum, and referred by Diesing to the genus Heteronema, does not appear to have been met with by any recent investigator. Its dimensions exceed those of any other representative of the present genus yet recorded, the rotatory motion attested to by Perty is also abnormal.

Doubtful Species.

De Fromentel * has bestowed new names on several forms included by him in the genus Heteromita, held by him, in common with many other writers, to be the equivalent of the genera Heteromita, Heteronema, and Anisonema of Dujardin. Certain of these possibly belong to Anisonema, but are too vaguely figured and described in most instances for reidentification. His Heteromita (Anisonema ?) gibbosa, characterized by its oval dorsal contour and gibbous enlargement of the posterior extremity as seen in profile, with a thicker trailing flagellum, equalling twice the length of the body, is the only one out of these it is desirable to retain. No dimensions or details as to habitat are given with his description, though if drawn to the same scale as most of the other figures in his plate, its length would be about the 1-1000th part of an inch. The Heteromita crassa of the same writer is beyond doubt identical with the Anisonema acinus of Dujardin.

The magnification of 400 diameters only, employed by De Fromentel for the delineation and description of the Flagellate forms treated of in his book, is altogether inadequate for their successful or even serious investigation.

Genus IV. Entosiphon, Stein.

Animalcules free-swimming, persistent in shape, more or less ovate, usually compressed, the cuticular surface indurated; flagella two in number, the one trailing and the other vibratile, inserted close to each other near the oral fossa; oral aperture terminal, followed by a distinct tubular pharynx, the walls of which are indurated and capable of protrusion in the form of a horny tube beyond the anterior margin; endoplasm transparent, granular; contractile vesicle and endoplasm conspicuous. Inhabiting fresh water.

This genus is founded by Stein † on the Anisonema sulcata of Dujardin; the essential feature distinguishing it from the ordinary members of the genus Anisonema

* 'Etudes sur les Microzoaires,' 1876. † 'Infusionsthiere,' Abth. iii., 1878.
being the possession of a separately protrusible pharyngeal tube, apparently of a
corneous nature, and comparable to that met with in _Prorodon, Nassula, Chilodon,_
and many other _Ciliata._

Entosipho _sulcatus,_ Duj. sp. Pl. XXIV. Figs. 31–34.

Body oval, depressed, slightly narrower anteriorly, the frontal border
obliquely notched on the left-hand side; the dorsal and ventral surfaces
usually traversed by four or five longitudinal furrows; flagella equally
slender, inserted at a little distance from each other, slightly to the left and
close to the anterior notch, the posterior appendage or gubernaculum two
or three times the length of the body, the anterior vibratile one usually
shorter; pharynx tubular, extending in a median line from the oral aperture
at the anterior extremity through nearly three-quarters of the entire length
of the body, independently exsertile; contractile vesicle single, situated a
little behind the insertion of the flagella and to the left of the pharyngeal
tube; endoplasm spherical, located posteriorly towards the centre of the
left-hand border. Length of body 1–1250”. _Hab._—Pond water.

The cuticular sulci, obliquely notched contour of the anterior border, and
enormous development of the pharyngeal tube, together with its protrusible properties,
serve to distinguish this type from the various species of _Anisonema_ with which it
was originally included by Dujardin. Longitudinal fission, commencing at the
anterior extremity and separating the body into two equal moieties, has been observed
in this species by both Stein and Butschli, the animalcule, preparatory to such
process, developing two additional flagella. The young zooids, according to Stein,
are perfectly smooth and pointed at each extremity. The contractile vesicle is
represented by this last authority as often exhibiting a rosette shape similar to
that of _Anisonema grandis,_ while a large ovate germ-mass may in like manner be
developed from the pre-existing simple spheroidal endoplasm. After the death of
the animalcule the indurated cuticle, with the enclosed horny pharyngeal tube,
resists decay for a considerable interval, presenting under such conditions the aspect
delineated at Pl. XXIV. Fig. 34.

Fam. IX. SPHENOMONADIDÆ, S. K.

Animalcules free-swimming, persistent in shape, cuticular surface
indurated; flagella two in number, one long and one short, both vibratile
and extended anteriorly; oral aperture succeeded by a distinct tubular
pharynx; endoplasm colourless, granular; endoplasm and contractile vesicle
conspicuous.

Genus I. SPHENOMONAS, Stein.

Animalcules free-swimming, persistent in shape, subfusiform, angular
or facetted; flagella terminal, two in number, one long and the other short,
both extended and vibratile; oral aperture situated at the base of the
flagella, followed by a distinct tubular pharynx, the distal end of which
usually communicates with the contractile vesicle; endoplasm transparent,
granular.

This generic group, as here defined, is made to include the genus _Tropidocyphus_
of Stein, in addition to that of _Sphenomonas_ as constituted by that authority; the
ORDER CILIO-FLAGELLATA. 439

distinction between the two specific forms only as yet relegated to these respective genera being apparently too slight for generic separation. Excepting for the presence of the second shorter flagellum these animalcules would appear to correspond chiefly with those of the monoflagellate form Petalomonas.

Sphenomonas quadrangularis, Stein. Pl. XXIV. Figs. 21-23.

Body subfusiform, or quadrangular, twice as long as broad, widest centrally and tapering towards each extremity, divided by four oppositely placed, longitudinal, keel-like ridges, so as to form a quadrate outline in transverse optical section; longer flagellum stout, nearly twice the length of the body, shorter one slender, scarcely one-quarter the length of the preceding; endoplasm subcentral; parenchyma transparent, often enclosing a large, ovate, apparently amylaceous body; contractile vesicle confluent with distal end of the tubular pharynx. Length 1-600".

HAB.—Fresh water; dividing by longitudinal fission.

Sphenomonas octocostatus, Stein sp. Pl. XXIV. Figs. 18-20.

Body symmetrically ovate or subfusiform, compressed, about one and a half times as long as broad, the posterior extremity pointed, the anterior one deeply notched or emarginate; cuticular surface ornamented with eight longitudinal and sometimes obliquely twisted keel-like ridges; both flagella slender, the longer one about twice the length of the body, the smaller one about one-quarter the length of the preceding; endoplasm coarsely granular; contractile vesicle situated close to but not confluent with the posterior termination of the tubular pharynx; endoplasm subcentral, reniform, often developing into a large ovate germ-mass. Length 1-400".

HAB.—Fresh water.

This species is figured by Stein* under the title of Tropidocyathus octocostatus; in the absence of full descriptive details it appears, however, to accord so closely in all essential points with the type last described, that it has been thought desirable to include it in the same genus. The addition to the Sphenomonas quadrangularis of four intervening longitudinal ridges and the emargination of the anterior border are alone required to produce, in accordance with Stein's figures, an animalcule absolutely identical with the present form. The encysted condition of this species, as shown at Pl. XXIV. Fig. 20, presents a remarkable resemblance to the carinated seed of an umbelliferous plant, such as Petroselinum or Coriandrum.

Order VII. CILIO-FLAGELLATA, C. & L.

Animalcules free-swimming, locomotive appendages consisting of one or more lash-like flagella, and a supplementary more or less highly developed ciliary system; oral aperture usually distinct.

As first instituted by Claparède and Lachmann,† this order included only the several genera forming the single family group of the Peridiniiidae. The results of more recent investigation have, however, rendered it necessary to extend its

* 'Infusionsthiere,' Abth. iii., 1878.
† 'Études sur les Infusoires,' Geneva, 1858.
Families and Genera of Cilio-Flagellata.

Fam. I. Peridiniidae.
Bearing one or more flagella and a distinct ciliary girdle.

Ciliary girdle central.
- No cuirass.
- Cilia describing a half-circle 1. Hemidinium.
- Cilia forming a complete girdle.
 - No supplementary cilia 2. Gymnodinium.
 - With supplementary cilia 3. Melodinium.
- Encuirassed.
 - Cuirass simple 5. Peridinium.
 - Cuirass facetted 6. Ceratium.

Ciliary girdle excentric.
- With raised ventral plates 8. Amphidinium.

Ciliary girdle terminal.
- Body encuirassed, smooth 10. Dimastigoaulax.

Two flagellate appendages.
- Encuirassed and horned, ciliary girdle central 11. Heteromastix.

Fam. II. Heteromastigidae.
Bearing one vibratile and one trailing flagellum, cilia forming a short adoral fringe.

Fam. III. Mallomonadidae.
Flagellum single, terminal; body clothed with long setose cilia.

Fam. IV. Stephanomonadidae.
Flagellum single, terminal, produced from the centre of a wreath-like crest of cilia.

Fam. V. Trichionemidae.
Flagellum single, supplemented by a more or less complete ciliary investment.
ORDER CILIO-FLAGELLATA.

boundaries for the admission of diverse other types which maintain under variously modified conditions the characteristics of the two larger sections of the Flagellata-
Eustomata and ordinary Ciliata, and thus intimately connect together these, at first sight, seemingly altogether independent groups. In illustration of a few of the more prominent relationships that are established between the two series of the typical Flagellata and Ciliata through the intermedium of the present order, it may be submitted that the retraction of the single flagellum is alone needed, in the genera Stephano monas and Asthmatos, to convert these types into simple Peritricha resembling Strombidium, though in the case of Asthmatos it is worthy of remark that the constituent elements of the terminal tuft of cilia are so long as to partake almost of the nature of flagella, thus conveying to the animalcules an aspect closely corresponding with that of the multiflagellate type Lophomonas. In Trichonema and Mitophora a similar suppression of the single flagellate appendage would transform these animalcules into simple Holotricha; while in the case of Heteronastix, where the flagella constitute the most important organs of locomotion, it requires only the obliteration of the adoral ciliary fringe to produce a typical representative of the simply flagellate genus Heteronema. The affinities of the important family group of the Peridiniidae are discussed at length in connection with the description given of that earliest recognized and typical section of the Cilio-Flagellata.

K. M. Diesing, in his ‘Revision der Prothelminthen,’* distinguishes this Cilio-
Flagellate order of the Infusoria by the title of the Mastigophora Trichosomata.

An analytical key to the various families and genera of the Cilio-Flagellata, as here delimited, is given on the opposite page.

Fam. I. PERIDINIIDÆ, Ehr.

Animalcules free-swimming, persistent in form, sometimes naked, but mostly invested by an indurated carapace or cuirass; flagellum usually single, ciliary system constituting a more or less perfectly developed zone-
like girdle; oral aperture distinct; an eye-like pigment-spot frequently developed. Inhabiting salt and fresh water, often highly phosphorescent. Increasing by fission and by subdivision into sporular elements.

The representatives of this highly characteristic family group are readily distin-
guished by the girdle-like disposition of the cilia which supplement the customarily single, but in one instance double flagellate appendage. It is further found that the body is with but few exceptions enclosed within a densely indurated carapace or cuirass, which is itself frequently composed of a greater or less number of polygonal and often elegantly sculptured facets. By far the larger number of species are inhabitants of salt water, agreeing in this respect with the pelagic Noctiluca, with which they further correspond, in many instances, by the exhibition of brilliant phosphoric properties. Excepting for the presence of the equatorial ciliary girdle it may be further noted that in such a non-encuirassed form as Gymnodinium the resemblance of external contour to that of Noctiluca is so conspicuous—including the possession in each case of a corresponding and apparently homologously developed non-ciliated vertical or ventral groove—that it would not seem inconsistent to anticipate that forms will yet be met with that still more closely connect these two types with one another. In no representative of the Peridiniidæ, however, as yet examined, has the internal body-substance or endoplasm been observed to exhibit that peculiar vacuolar or reticulate character so eminently distinctive of the Noctilucidae. In the possession, more especially by the fresh-water members of this group, of a frequently brilliant scarlet eye-like pigment-spot, combined with the pervading green or other coloured hue of the general body-sub-
stance, some distant affinity with the family of the Euglenidæ would seem to be

ORDER CILIO-FLAGELLATA.

maintained. In common with these simpler Flagellata, it is further noteworthy that they often occur in such prodigious numbers as to impart a distinct tint to the water they inhabit. Interesting data connected with this last-named circumstance will be found recorded in the descriptions hereafter given of Peridinium sanguineum and Melodinium uberrimum.

Genus I. HEMIDINiUM, Stein.

Animalcules free-swimming, persistent in form, but not encuirassed; flagellum single, supplemented by an adoral fringe of cilia which is developed in a groove that extends half-way only round the circumference of the body, and at one extremity of which groove the oral aperture is located.

Hemidinium nasutum, Stein.

Body much compressed, somewhat kidney-shaped, the left border straight, the right one convex; the equatorial, semicircular, ciliated furrow continued obliquely backwards from the ventral towards the dorsal region of the left body-half; the anterior moiety of the ventral surface further distinguished by a faintly impressed vertical groove, the bottom of which gives origin to the single flagellum; endoplasm roundish, located in the hinder body-half. Dimensions unrecorded.

Hab.—Fresh water; colour yellow.

This as yet single known representative of the genus Hemidinium is briefly described without accompanying figures in the text of Stein’s recently published volume. The oral aperture, though not directly observed, was adjudged to be located close to the ventral extremity of the semicircular ciliated groove, while the capacity of assimilating solid nutriment was fully proved by the presence of incepted green corpuscles of considerable size. The integument in this type is reported by Stein to be of firm consistence, and although not indurated and differentiated to such an extent as to partake of the nature of a cuirass or carapace, exhibits a marked contrast in this respect to the comparatively soft and yielding cuticular surface of Gymnodinium.

Genus II. GYMNoDINiUM, Stein.

Animalcules free-swimming, more or less persistent in form, but not encuirassed; cilia forming a continuous fringe along the interior of a transverse groove or furrow which completely encircles the equatorial region of the body, a second non-ciliated groove produced mesially on the ventral surface from the transverse furrow towards the anterior or apical extremity; oral aperture and the insertion of the single, long, lash-like flagellum located ventrally, in close vicinity to the juncture of the transverse and longitudinal grooves. Inhabiting salt and fresh water.

This genus is instituted by Stein† for the reception of several forms, including notably the as yet very imperfectly observed Peridinium fuscum and pulvisculus of Ehrenberg and the Peridinium monadicum and P. corpusculum of Perty, in which the body and locomotive appendages, while according with those of the ordinary Peridinia, differ from these in the entire absence of an indurated cuticular investment or cuirass. As a consequence of this naked and comparatively soft consistence of the external

* 'Infusionsthiere,' Abth. iii., 1878.
† Ibid.
envelope, the animalcules assume after death various irregular shapes, and speedily undergo complete disintegration. As indicated by Stein, *Gymnodinium* may be regarded as the ground or stock form of the various more complex representatives of the Peridiniidae.

Gymnodinium fuscum, Ehr. sp. Pl. XXV. Figs. 17 and 18.

Body oval, slightly compressed, rounded posteriorly, acuminately pointed anteriorly, nearly twice as long as broad; surface smooth, colour light brown; no eye-like pigment-spot. Length 1–430" to 1–280". **HAB.—**Fresh water.

In the figures of this species, as given by Ehrenberg in connection with the title of *Peridinium fuscum*, and here reproduced, the flagellate appendage was apparently overlooked, while the vertical as well as the transverse groove is represented as bordered with cilia. The presumed example of longitudinal fission delineated by the same authority (see Pl. XXV. Fig. 18), is regarded by Stein as an advanced phase of the process of fusion or genetic union between two previously independent zooids, which he has frequently observed to take place under similar auspices in connection with the species next described.

Gymnodinium pulvisculus, Ehr. sp. Pl. XXV. Figs. 19 and 20.

Body subspheroidal, slightly trilobate, surface smooth; flagellum conspicuous, two and a half times as long as the body; colour light brown or greenish-yellow. Length 1–2300" to 1–1150".

HAB.—Amongst Confervæ with *Chlamydomonas pulvisculus*, often in great numbers.

As represented in Ehrenberg's figures of this species, coloured matter is freely incepted. Perty reports the presence of an eye-like pigment-spot in the anterior body-half, but such a structure is not indicated in Ehrenberg's original drawings and descriptions. The process of conjugation or fusion has been observed by Stein, who identifies with this phenomenon the representations of presumed longitudinal fission given by Ehrenberg.

Gymnodinium corpusculum, Perty sp.

Body ovate or elliptical, segments very unequal, the posterior one considerably the smaller; flagellum conspicuous, about twice the length of the body; no eye-like pigment-spot; enclosing variously coloured granules. Length 1–1120". **HAB.—**Fresh water, among *Marchantia polymorpha*.

Described by Perty * under the title of *Peridinium corpusculum*.

Gymnodinium monadicum, Perty sp.

Body ovate or subspheroidal, segments unequal, the hinder one being considerably the smaller of the two; eye-like pigment-speck distinct, sub-central; flagellum conspicuous, two or three times as long as the body; endoplasm colourless, enclosing green food-corpuscles. Length 1–1120".

HAB.—Pond water.

This species was reported by Perty from the Bernese Alps. Stein† has encountered an apparently identical form in the neighbourhood of Prague, recording of it

* 'Zur Kenntniss kleinsten Lebensformen,' Berne, 1852.
† 'Infusionsthiere,' Abth. iii., 1878.
that the body is transparent or bluish-white, with a sharply defined red eye-like pigment-speck, a long flagellum, and very delicate ciliary girdle; the body was usually observed to contain a greater or less number of devoured *Chlamydomonas monadina*. By a careful examination a round light spot was detected near the point of junction of the characteristic equatorial and longitudinal body grooves, which apparently betokened the oral aperture; the long flagellum was inserted close to this oral fossa. Stein had previously provisionally conferred upon this type the name of *Peridinium vorticella*, but recognizes in his most recently published volume its probable identity with Perty's type.

Gymnodinium marinum, S. K. Pl. XXV. Figs. 60 and 61.

Body subspheroidal or trilobate from the dorsal or ventral aspect, kidney-shaped, with a convex dorsal, and concave ventral surface, as seen in profile; flagellum conspicuous, its length equalling twice the diameter of the body; endoplasm transparent, usually enclosing numerous spheroidal corpuscles; oral aperture distinct. Diameter 1–1000". HAB.—Salt water.

This species was obtained abundantly by the author in an infusion of hay in seawater made at St. Heliers, Jersey, in February 1879, and after the expiration of just one month from the first preparation of the maceration. The motions of the animalcule in the water were rapid and oscillating, and its habits eminently predatory, closely resembling those of *Dinomonas*. As observed of the two species of the last-named genus, it was continually engaged in chasing and devouring the smaller *Heteromita* and other monads contained in the same infusion, its oral aperture during the engulfment of its captured prey, as shown at Pl. XXV. Fig. 61, being expanded and conspicuously indicated. It would seem just possible that the *Peridinium monas* of Ehrenberg, briefly described as "very small, obtuse, without horns, remarkably social. Diameter 1–1728". HAB. Baltic Sea," may be identical with this species.

Gymnodinium Lachmanni, S. K. Pl. XXV. Figs. 58 and 59.

Body elliptical, twice as long as broad, equatorial groove very oblique; endoplasm transparent, enclosing spheroidal corpuscles. Length 1–600". HAB.—Salt water.

This species is simply recorded by Claparède and Lachmann as a minute *Peridinium*, encountered in salt water on the coast of Norway. Its relationship to the other members of the present genus is obvious, though at the same time it differs, in its greater proportionate length and in the conspicuously oblique direction of the equatorial groove, from the marine form previously described.

Gymnodinium roseolum, Schmarda sp. Pl. XXV. Fig. 53.

Body elliptical; segments uneven; flagellum indistinct; colour pale pink; enclosing an eye-like pigment-spot. Length 1–720". HAB.—Fresh water.

Described by Schmarda * as a species of *Glenodinium*. Incepted Chlamydomonads and other food-material were observed by its discoverer.

The *Peridinium inerme*, a minute subspheroidal form (Pl. XXV. Fig. 54), and the *Peridinium inaequale*, having conspicuously narrow segments, of the same writer, are apparently identical with the *Gymnodinium monadicum* and *G. corpusculum* previously described.

Genus III. Melodinium, S. K.

(Greek, melon, a peach; dine, a vortex.)

Animalcules naked, persistent in form but not encuirassed, having a central equatorial ciliated groove, and a second shorter longitudinal furrow extending from the transverse one towards the apical extremity; flagellum single, issuing from a depression in the ventral groove; entire surface of the body ciliated, as well as the annular furrow; coloured stigma present or absent.

This new genus is provisionally established for the reception of the Peridinium uberrimum of Professor Allman, characterized by the distribution of vibratile cilia throughout the whole extent of its cuticular surface, and by the consequent absence of an indurated carapace or cuirass. It is at the same time not altogether impossible that future investigation may demonstrate this animalcule to be a shell-less developmental condition of certain ordinary Peridinia, Claparède and Lachmann having shown that a shell-less or non-encuirassed state is common to the earlier phases of many of these latter. In the interim, nevertheless, it appears to be desirable to institute an independent generic name for a type whose characters differ so widely from those of the genus with which it has been hitherto associated.

Melodinium uberrimum, Allman sp. Pl. XXV. Figs. 34 and 35.

Body subspheroïdal, having a transverse annular furrow and a supplementary vertical groove developed on the ventral surface, which extends from the centre of the annular furrow to the apical extremity; entire cuticular surface finely ciliate; endoplast conspicuous, ovate, subcentral; a red eye-like pigment-spot usually present in the apical region. Length 1-1000" to 1-500"; colour reddish brown.

Hab.—Fresh water, ponds in the Phoenix Park, Dublin; gregarious.

As already notified, this species is synonymous with the Peridinium uberrimum of Professor Allman, first described in the 'Quarterly Journal of Microscopical Science,' p. 21, for the year 1855. In its broader details it would seem to correspond closely with the animalcule figured and described by Claparède and Lachmann (See Pl. XXV. Fig. 5) as a possible shell-less or transitional condition of an ordinary Peridinium, such as P. tabulatum. At the same time no trace of an entire ciliary clothing is mentioned or figured by these writers, but which may nevertheless have been too fine to attract notice with the magnifying power employed.

Some estimate of the essentially gregarious habits of this animalcule may be arrived at in connection with the following abstract of Professor Allman's original record. Speaking at the Dublin Academy, in June 1854, he remarked,—that for the three previous weeks the brown colour assumed by the water in the large ponds in the Phoenix Park was owing to the presence of prodigious numbers of a species of Peridinium, this colour being sometimes uniformly diffused through the water, and at others being collected in dense clouds varying from a few to upwards of one hundred square yards in extent. Later on, the coloration of the ponds brought about by the agency of these minute organisms had much increased in density; by the 9th of July the water was so deep a brown that a white disc, half an inch in diameter, was invisible when plunged to a depth of from three to six inches, while a copious exit stream, constantly flowing away from the ponds, presented a similar deep brown hue. In many places the animalcules had descended from the surface, and were found congregated in immense masses near the bottom of the water; in these instances they had, for the most part, assumed a quiescent or encysted state, the
flagellum and cilia having disappeared, and the body being contracted within the
centre of an external hyaline envelope. Multiplication by transverse fission, as
represented at Pl. XXV. Fig. 35, is the only mode of reproduction that was
observed by Professor Allman, though doubtless the encysted state, in common with
that of all ordinary Flagellata—see also Peridinium sanguineum—is accompanied by
the breaking up of the body into sporular elements.

Genus IV. Glenodinium, Ehrenberg.

Animalcules free-swimming, encuirasséd, body separated by a transverse
or equatorial ciliated furrow into two equal or subequal portions, a more or
less conspicuous non-ciliated groove produced from the ventral aspect
of the equatorial furrow towards the apical extremity; cuirass consisting of
two equal or subequal segments, which invest and correspond with the
anterior and posterior halves of the body, leaving bare the equatorial and
longitudinal grooves, not further subdivided into polygonal facets; oral
aperture and insertion of the flagellum located on the ventral aspect near the
junction of the two grooves; endoplasm often, but not invariably, enclosing
a coloured eye-like pigment-spot. Inhabiting salt and fresh water.

As first instituted by Ehrenberg, this genus was made to include all those forms
of *Peridinium* and its allies that were distinguished by the possession of an eye-like
pigment-spot. As shown, however, by Claparède and Lachmann, and other recent
observers, this proposed feature of distinction is, as in the genus *Euglena*, inconstant
even among representatives of the same species, and cannot therefore be made the
basis of generic diagnosis. Quite recently, however, Stein * has pointed out that
among the animalcules referred to the genus *Glenodinium* by the authority first-named,
there occurs one, *G. cinctum*, which differs from all its co-associated types in the
smooth and undivided character of the two segments of the cuirass, and that this
distinctive characteristic is likewise shared by other animalcules previously rele-
gated to the genus *Peridinium*. For these he proposes collectively to retain the
generic name of *Glenodinium*, introduced by Ehrenberg, and it is with a similar
significance included in this volume.

Glenodinium cinctum, Ehr. Pl. XXV. Figs. 27–29.

Body ovate or elliptical, about twice as long as broad, entirely smooth
and homogeneous; cuirass composed of two even anterior and posterior
segments only, and not of separate plates or facets; a red eye-like pigment-
spot present or absent, when developed large and crescentic, subcentral;
colour light brown. *Length 1–570".* HAB.—Fresh water.

This species is identical with the *Glenodinium cinctum* of Ehrenberg, but not with
the *Peridinium cinctum* of that same authority; this latter form, as presently explained,
representing examples only of *P. tabulatum*, in which an eye-like pigment-spot is
conspicuously developed. The encysted state of this animalcule has been observed
by Claparède and Lachmann, a condition of the same, with the valves of the cuirass
falling asunder, being delineated at Pl. XXV. Fig. 29.

Glenodinium acuminatum, Ehr. Pl. XXV. Figs. 21 and 22.

Body ovate or spheroidal, slightly trilobate; cuirass smooth, terminating
posteriorly in a short acuminate point; colour brownish yellow. *Length
1–570".* HAB.—Salt water, highly phosphorescent.

* 'Infusionsthiere,' Abth. iii., 1878.
GENUS V. PERIDINION, Ehrenberg.

Animalcules free-swimming, encuirassèd; body divided by a transverse ciliated furrow into two equal or subequal moiëties; a second, shorter, non- ciliated groove produced from the centre of the ventral aspect of the equatorial furrow towards the apical extremity; cuirass consisting of two primary anterior and posterior segments, which are further subdivided into a variable number of smaller smooth or variously sculptured polygonal facets; flagellum single, inserted close to the oral aperture near the junction of the equatorial and vertical furrows; a coloured eye-like pigment-spot frequently developed. Inhabiting salt and fresh water.

The genus Peridinium, as here constituted, embraces most representatives of the genera Peridinium and Glenodinium of Ehrenberg, but from out of both of which, as previously explained, are eliminated and associated with the last-named title those forms only in which the cuirass or carapace is composed of two simple undivided segments. The ciliary groove and wreath of Peridinium and its allies, although usually described as forming an uninterrupted girdle around the centre of the animalcule’s body, is shown by Claparède and Lachmann to deviate more or less conspicuously from so simple circuitous a course. As made apparent more especially by those observers in connection with the marine form Peridinium spiniferum (see Pl. XXV. Fig. 15), the left extremity or limb of this ciliary girdle takes its origin from a point considerably in advance of the precise centre of the ventral surface, and after obliquely encircling the dorsal region of the animalcule’s body, terminates again in the middle line of the ventral aspect, but at a point as much to the rear of the same imaginary centre; the right and left limbs of the groove, with its accompanying cilia, lie consequently on two distinct levels. A similar deviation of the course of the equatorial groove and ciliary girdle is in a less marked degree—being sometimes scarcely perceptible—shared by all the representatives of the several genera, Peridinium, Glenodinium, and Ceratium. Another characteristic common also to the majority of these closely allied encuirassèd forms, is the presence on the ventral surface, and immediately opposite the anteriorly produced non-ciliated vertical furrow, of a deep inlet or emargination in the substance of the posterior segment of the cuirass, which consequently leaves the body of the animalcule naked and exposed. It is within or in the immediate vicinity of this circumscribed area that the oral aperture would appear to be situated, though its existence has not yet been so clearly demonstrated as in the case of Gymnodinium. Immediately above, and in advance of this emargination, will be found inserted the single long flagelliform appendage.

Although the reproductive phenomena of the present genus, and of the Peridiniidæ in general, have not as yet been completely elucidated, some important data in this connection have been recorded, through the joint work of Messrs. Claparède and Lachmann. Encystment has been observed by these authorities to take place in a large number of forms and under diverse conditions; segmentation on a more or less extensive scale being in many cases the direct product of the process. In some instances, as shown at Pl. XXV. Figs. 4, 10, and 29, encystment is effected within the normal carapace or cuirass, and is not attended by any supplementary metamorphoses. Other instances were observed, however, in which the cuirass of the typical motile zooid being cast off, a new and continuous cyst, comparable in all ways to that produced by the ordinary Flagellate and Ciliate Infusoria, was secreted. The animalcule, pending the secretion of this second envelope, temporarily maintains a naked phase of existence, which is, as shown at Pl. XXV. Fig. 5, directly comparable to the permanent form of Gymnodinium. This variety of encystment is sometimes, as among the ordinary Infusoria, associated only with the temporary retreat or hibernation of the animalcule, or it may have as its object the further propagation
of the species. Under these last conditions the cyst produced is mostly found to exhibit a peculiar modification of contour. In place of being subspherical or ovate, as obtains under ordinary conditions, one or both of the extremities are prolonged into an attenuate, curved, and acuminate point. These recurved points in the latter instance being produced in the same plane, the result is a crescentic or lunate-shaped cyst, somewhat resembling in shape the Desmid Closterium. Examples of these lunate or subcrescentic cysts are reproduced from Claparède and Lachmann's drawings at Pl. XXV. Figs. 47, 48, and 49, 50; those in the two former instances representing a marine, and in the two latter ones a fresh-water type, whose specific identity could not in either case, unfortunately, be precisely determined. The delineation given at Fig. 49 is of special interest, since in that instance the primarily enclosed single zooid has become metamorphosed by linear or serial segmentation into no less than eight sporular elements or daughter-cells, having each the characteristic trilobate contour of the parent, but wanting the investing carapace; they are in fact at this early phase of their development indistinguishable from the members of the genus Gymnodinium, previously described, and with which they are thus shown to be intimately and phylogenetically related. It is further noteworthy, in this connection, that the assumption of a similar and comparatively simple Gymnodinium phase is frequently resorted to by the animalcules of the present genus as a preliminary to the process of encystment, while it is only under such temporarily naked state that increase by fission, or genetic union, can be accomplished. This assumption by the members of the genus Peridinium of an alternating encuirassed and naked state considerably enhances the difficulty of determining which forms possess a sound claim for relegation to the genus Gymnodinium, and it is necessarily only those types which are found to persistently maintain the naked condition that can be allotted to this group.

Peridinium tabulatum, Ehr. sp. Pl. XXV. Figs. 1-5 and 55-57.

Body ovate or subcircular as seen in dorsal or ventral view, much flattened or depressed, with a convex dorsal and concave ventral surface, as seen in lateral aspect; cuirass composed of numerous polygonal facets, which individually exhibit under high magnification a delicate reticulate structure; colour yellowish green or brown; one or more red eye-like pigment-spots frequently but not invariably developed. Length 1-570" to 1-430". HAB.—Fresh water; gregarious.

This species, originally described by Ehrenberg as a species of Glenodinium, is one of the most cosmopolitan members of the present genus, and frequently occurs in pond-water in such abundance as to impart to the water its own characteristic rust-brown hue. A considerable amount of variation is found to obtain in the contour of the two apical poles of the cuirass of this species in examples derived from diverse localities. Sometimes, as shown at Pl. XXV. Fig. 1., both of these poles are uniformly smooth and rounded; more often, however, it is found that the facets of the anterior segment of the cuirass project apically in such a manner as to impart a notched or shortly bifurcate aspect to the anterior border, and so prepare the way to the closely parallel but more decided horn-like projections in this region that are found in Ceratium divergens. Examples with a rounded posterior and distinctly notched anterior pole are delineated at Figs. 55-57. A still more complex modification of the cuirass is included in the representations of this species given by Ehrenberg, in some of which, as reproduced at Pl. XXIV. Fig. 2, the posterior segment is likewise produced apically into three or four acuminate points. The number of large polygonal plates or facets reckoned by Stein to enter into the composition of the two segments of the cuirass in this species, is no less than twenty-one, sometimes more, and of which fourteen to sixteen belong to the anterior and seven to the posterior moiety; added to this, he says, are smaller linear or band-
like indurations, which bound the equatorial and vertical furrows. The elegant sculpturing of the larger polygonal and usually five- or six-sided facets, may be most readily examined in connection with the empty or disintegrated carapaces that are usually found abundantly distributed in the water that supplies the living zooids. A delineation of such a highly magnified single facet is given at Fig. 3. The encystment of this species within its cuirass has been observed by Claparède and Lachmann, as also the naked Gymnodinium-like phase, both of these conditions being reproduced from their drawings at Figs. 4 and 5. In examples examined by the author, a long curved band-like endoplasm or nucleus, similar to that commonly met among the Vorticillidae, has been occasionally observed, one such distinctly nucleated specimen being represented at Fig. 56. The species has been obtained by the author in profusion from various localities in the suburbs of London, and has also been received from the neighbourhood of Birmingham, through Mr. Thomas Bolton.

Very recently, November 1880, the author has received this animalcule in company with other Flagellata, through Mr. John Hood, from the neighbourhood of Dundee. The chief interest attached to such consignment is connected with the fact that many lunate encystments, corresponding essentially with those first described of an unknown form by Claparède and Lachmann, and represented at Pl. XXV. Figs. 49 and 50, were detected among the sedimentary matter at the bottom of the phial in which they were transmitted. The contents of these cysts, which were usually divided into two equal moieties, exhibited the same rust-brown hue as the motile zooids. There can be but little doubt that the similar shaped encystments in the figures quoted belong to the present very widely distributed species.

Peridinium apiculatum, Ehr. sp. Pl. XXV. Figs. 6 and 7.

Body oval, depressed; cuirass composed of large polygonal reticulate facets, the edges of which are finely hispid and separated from one another by clear, smooth intervals; colour yellowish-green; an eye-like pigment-spot of oblong form usually present. Length 1–570" to 1–350".

HAB.—Fresh water.

This species was described by Ehrenberg under the title of Gymnodinium apiculatum, and does not so far appear to have been encountered by any other authority. Stein is inclined to regard it only as a variety or older phase of *Peridinium tabulatum*.

Peridinium reticulatum, C. & L. Pl. XXV. Fig. 41.

Body ovoid; cuirass composed of numerous minute, smooth, polygonal facets, equatorial furrow obliquely developed; colour brown. Length 1–570". **HAB.**—Salt water: Norwegian coast (C. & L.).

Peridinium spiniferum, C. & L. Pl. XXV. Figs. 15 and 16

Body ovoid, rounded posteriorly; cuirass composed of large polygonal facets; two closely approximated spines developed at the apical extremity of the anterior segment; transverse furrow very oblique, forming an elongate spire. Length 1–620".

HAB.—Salt water; Norwegian coast (C. & L.).

Peridinium splendor-maris, Ehr.

Cuirass ovate or subglobose, transparent, facetted, cribrate or granular, neither apiculate nor provided with horn-like processes; margins of the
transverse groove projecting, and presenting laterally the aspect of tooth-like processes; facets developed on each side of equatorial furrow, five in number. Diameter 1-1152" to 1-480".

HAB.—Salt water: Naples. Highly phosphorescent.

In contour this species would appear to closely resemble the smooth variety of the fresh-water *Peridinium tabulatum*.

Peridinium chilophænum, Ehr.

Cuirass subglobose, hornless, its surface smooth, neither facetted nor punctate; equatorial furrow distinct, its margins presenting laterally the appearance of projecting teeth; oral fossa narrow, curved. Diameter 1-648".

HAB.—Salt water: entrance of Davis Straits, and Iceland, with soundings from a depth of 1158 feet.

Peridinium sanguineum, Carter.

Body subcircular, paraboloidal or kite-shaped, compressed, sulcate ventrally; equatorial groove deep, its upper border distinctly ciliate; cuirass faintly facetted over the anterior or conical half, the posterior or rounded half entirely smooth; an eye-like pigment-spot and endoplasm usually conspicuous. Length 1-1120" to 1-700".

HAB.—Salt-water pools, and in the sea on the shores of the Island of Bombay. Movements waddling, the small end forwards and the long flagellum floating behind; colour changing successively from green or golden yellow to brown and vermillion or minium red.

This species, described by Mr. H. J. Carter in an article on "The Red Colouring Matter of the Sea round the Shores of the Island of Bombay," contributed to the 'Annals of Natural History' for April 1858, is of special interest in connection with the light it throws upon the phenomena frequently observed, but not previously explained in a satisfactory manner, concerning the sudden assumption by the sea, or other waters, of a blood-red hue. According to Mr. Carter, this animalcule, during the earlier and active phase of its existence, is green and translucent, reflecting little or no light, the colouring matter out of which its body-substance is composed being akin to or identical with the chlorophyll of plants. Gradually, as the time approaches for it to assume its quiescent or encysted state, a number of semi-translucent, refractive oil-globules are secreted within the interior; the green colour now disappears and a bright red one takes its place, mixing with the oil, and thus the animalcules become visible to the naked eye, the whole portion of the sea charged with them acquiring a deep vermillion hue. This colour is so prominently developed under these conditions that in the sea-water pools left by the reflux of the tide on the shores of the Island of Bombay, such pools present to the uninitiated the appearance of having had a quantity of vermillion or minium thrown into them. An examination of this water under a microscope shows, however, that the red colours are entirely due to the *Peridinia*. The vermillion hue now arrived at only lasts a few days; the animalcules assembling together become individually encapsulated, and in this state float on the surface or sink to the bottom. Duplicative subdivision now takes place within the capsules or encystments, each animalcule by such process becoming divided into two or four equal fragments, which are subsequently liberated by the bursting of the cyst. In other, rarer instances, it is affirmed by Mr. Carter that a litter of ciliated monads may be developed in a distinct cell within the
ordinary capsule, such brood being the product of a true act of generation (conjugation), or the final formative effort of the protoplasm.

Many earlier records of the observation of phenomena connected probably with the presence of an animalcule identical with, or allied to, *Peridinium sanguineum* are quoted by Mr. Carter. Thus, Charles Darwin * observed an apparently identical animalcule which coloured the sea red, a degree south of Valparaiso. Salt, in his ‘Voyage to Abyssinia,' mentions the presence of animalcules in the Red Sea, which produced the red colour characteristic of those waters during the day, and became luminous at night by agitation after the manner of numerous other *Peridinium*. Olafsen and Povelsen are further cited as having recorded, so long since as 1694, of the sea on the shores of Iceland, that during the daytime it was as red as blood, and in the night apparently as though on fire. Mr. Carter finally suggests the high probability that the plague of Egypt—manifested by the apparent turning of all the waters into blood, in which the fish in the river died, and the river stank, and the Egyptians could not drink of the water of the river—may be consistently interpreted in connection with an abnormal development of an animalcule allied to this species. Such interpretation is further supported by facts connected with the discoloration of the sea, that Dr. Buist recorded in the ‘Proceedings of the Bombay Geological Society' for the year 1855. On the 27th of October 1849 it was observed by that authority that the water at Ponbunder, on the coast of Khattywar, was changed from the usual tint to a deep red, emitting a most foul smell; the fish were speedily all destroyed, and were washed upon the beach in large quantities. It was conjectured by the narrator that the phenomenon was owing to some submarine eruption of mud, but the locality being one in which red water produced by the presence of animalcules is extremely common, the cataclysmic interpretation suggested is scarcely warranted. The offensive effluvium exhaled by waters in which *Peridinia* and lower Protophytes have developed in large quantities is personally testified to by Mr. Carter in the case of a *Peridinium* obtained by him from a fresh-water tank at Bombay, and where he says it not only "turned the water quite brown, but imparted a smell and insipid taste to it, which almost rendered it undrinkable." He further cites the case of a little algal, *Aphanizomenon flos-aquae*, frequently developed under like conditions in the same fresh-water tanks, which often not only "renders the water undrinkable, but produces an intolerable stench by its putrefaction."

It may be suitably mentioned in connection with the foregoing data that Ehrenberg, in the ‘Monatsbericht der Berliner Akademie' for the year 1853, records the fact that during the remarkable cholera epidemic prevalent throughout Europe in the year 1848, two flagellate organisms, *Chloraster gyranus* and *Spondyloporum guaternarium*, were so abundantly developed in the water-tanks in the streets of Berlin as to render the fluid completely green and unfit to drink. If not the direct cause of zymotic disease, there can be but little doubt that an abnormal development of these and kindred lowly organized beings in ordinarily potable water indicates that such fluid has been contaminated by the accession of extraneously derived organic matter to an extent making it not only unsuitable, but highly deleterious for human consumption.

Peridinium squalis, S. K. Pl. XXV. Fig. 14.

Body symmetrically bi-conoidal, widest in the centre, tapering evenly at an angle of about 67° towards the anterior and posterior extremities, both of which terminate in two or more short, pointed cusps; equatorial zone of cilia broad and evenly developed; a second furrow of equal breadth proceeding from the centre of the equatorial one towards the anterior pole; measurement between the two poles scarcely exceeding that of the width; endoplasm conspicuous, band-like. Dimensions unrecorded.

HAB.—Salt-water.

* *Journal on board H.M.S. Beagle,' pp. 17, 18.
ORDER CILIO-FLAGELLATA.

The above title is here conferred on the species of *Peridinium* figured and briefly described, without a name attached, by Dr. von Willemoes-Suhm in the 'Zeitschrift für Wissenschaftliche Zoologie,' Bd. xxi. p. 303, and Taf. xxxi., 1871. The even and elegant symmetry of its form distinguishes it conspicuously from all other known species of the genus. The character or even existence of the flagellum appears to have escaped the notice of its discoverer.

GENUS VI. CERATIUM, Schrank.*

Animalcules free-swimming, encuirassed, body divided by a central ciliated furrow into two equal or subequal portions, a second shorter, non-ciliated groove extending from the centre of the ventral aspect of the equatorial furrow towards the anterior pole; cuiress consisting of two equal or subequal segments, separated by the equatorial groove, which may or may not be subdivided into secondary plates or facets; one or both of these segments produced into more or less conspicuous horn-like prolongations; flagellum single, inserted close to the oral aperture at or near the junction of the equatorial and longitudinal furrows; eye-like pigment-speck rarely developed. Inhabiting salt and fresh water.

The representatives of this genus, while formerly included in that of *Peridinium*, are conveniently separated and distinguished by the presence of the more or less conspicuously developed horn-like extensions of the cuiress. The close affinity of the two genera is at the same time abundantly demonstrated by such an intermediate or annectant form as *Ceratium divergens*, which practically possesses but a slightly more differentiated modification of the cuiress than obtains in the more normal variety of *Peridinium tabulatum*. The larger number of species of this genus are pelagic, many of them being noted for their phosphorescent properties. An interesting feature connected with certain of these pelagic types is the marked isomorphic resemblance presented by the cuiresses with their long, divergent, horn-like prolongations, to other floating organisms with which they are associated. In this manner the attenuately prolonged, triradiate cuiress of *Ceratium tripus* (var. *macrocera*) finds its countertype not only in the skeletal framework of the floating larva or "Pluteus" of various Echinodermata, but in the larval or free-floating "zoa" conditions of many of the highly organized Podophysalymous Crustacea, such as *Porcellana*, in which a like production of the chief skeletal element, the carapace, into three attenuate horn-like prolongations many times longer than the body, is encountered. An even more astonishing mimetic resemblance subsists, however, between the above-named species of *Ceratium* and the larval forms, the nauplii, or so-called "Archezon" (Dohrn) of the Cirripede *Lepas fasciculatus* as figured by Dr. R. von Willemoes-Suhm in the 'Philosophical Transactions,' p. i., for the year 1876. Here three long, serrated, spinous processes are developed in the same order and maintain the same preponderating proportions with relation to the central body, the superficial resemblance indicated being so complete that under a low magnifying power the essentially distinct nature of the two organisms would scarcely be detected. Finally, the four-horned *Ceratium longicornus* is obtained in company with a Rotifer (*Anurea longispina*) characterized by the possession of great spinous processes that attain a similar proportionate length, and decussate in the same order from the surface of its carapace. The utility of these arm-like appendages, giving their possessors greater buoyancy and marked fitness for a pelagic or floating existence, is obvious; their coincidence of plan in four such very divergent organic groups being at the same time most remarkable.

* 'Fauna Boica,' 1793.
A.—HORN-LIKE PROCESSES SHORTER THAN THE BODY.

Ceratium divergens, Ehr. sp. Pl. XXV. Figs. 8-13.

Cuirass rhomboidal, widest centrally, attenuate and acuminate posteriorly, the anterior extremity armed with two short, straight, pointed horns, each of them having a tooth-like process at the basal portion of their inner margin. Diameter 1-576".

This animalcule was first described by Ehrenberg under the title of *Peridinium divergens*. Claparède and Lachmann regard the *P. depressum* of Bailey (Pl. XXV. Figs. 12 and 13) as identical with this species. These same authorities, as shown in the figures here reproduced, have observed the species in both its encysted and naked or *Gymnodinium* phases of existence. The contour of the empty cuirass, as shown at Figs. 8 and 9, presents a remarkably elegant faceted crystalline aspect.

In the 'Monatsbericht der Berliner Akademie' for the year 1854 Ehrenberg has described, under the title of *P. divergens* var. *reniforme*, a modification of the present form characterized by a somewhat wider reniform contour of the cuirass, the posterior extremity being further produced as a short, obtusely pointed, stylicate process.

Ceratium Michaelis, Ehr. sp. Pl. XXV. Fig. 23.

Cuirass ovate, having two short, straight, anterior and one postero-terminal, subcylindrical, horn-like processes, the extremities of which are abruptly truncate; surface entirely smooth. Length 1-570".

HAB.—Salt water. Highly phosphorescent; colour yellow.

The truncate termination of the horns, in addition to the absence of tooth-like processes at the base of the two anterior ones, distinguishes this form from *C. divergens*, which it otherwise most nearly resembles.

Ceratium tridens, Ehr.

Cuirass resembling that of *C. Michaelis* and *C. divergens*, bearing three acute frontal horns, the posterior extremity attenuate, surface granular. Length 1-576". HAB.—Salt water: Baltic Sea. Colour yellow.

Ceratium bicornes, Schmarda sp. Pl. XXV. Fig. 62.

Cuirass ovate or subspherical, having two anteriorly developed horn-like processes only, the one taking the form of a straight, axial, acuminate point, the second antero-lateral, curved, and spur-like, equal in length to about one-half of the length of the body. Length 1-1080" to 1-840". Colour brick red. HAB.—Salt water.

Ceratium pyrophorum, Ehr.

Cuirass ovate or subspherical, with two little acuminate points at the anterior extremity; surface delicately areolate and granular. Length 1-570" to 1-480".

HAB.—Baltic Sea, near Kiel, and also as a fossil in the flints of the chalk formation from the neighbourhood of Brighton and Gravesend.
ORDER CILIO-FLAGELLATA.

Ceratium delitiiense, Ehr.

Cuirass ovate or subspheroidal, with a single median, lateral, short, acuminate process. Length $1\sim 430^\circ$ to $1\sim 280^\circ$.

HAB.—Fossil in the chalk flints of Delitzsch.

The inclusion of this species among the representatives of the present genus, or indeed, in the Protozoic sub-kingdom, is necessarily probational.

B. HORN-LIKE PROCESSES AS LONG OR LONGER THAN THE BODY.

Ceratium tripus, Müll. sp. Pl. XXV. Figs. 24, 33, and 36.

Body somewhat triangular, truncate in front and tapering posteriorly, the anterior segment of the cuirass bearing two long, laterally developed, recurved, horn-like processes, and the posterior one a single, similarly long or longer and straight median process; the edges of these processes usually more or less denticulate. Length of body, including the horns, $1\sim 140^\circ$; without the horns, $1\sim 430^\circ$.

HAB.—Salt water. Colour yellow; highly phosphorescent.

This species, originally described by O. F. Müller under the title of Ceraria tripus, is subject to great individual variation, and more especially with respect to the proportionate size, and angle of divergence from the body, of the horn-like processes. Two of the more prominent of these variations, indeed, originally received a separate specific description at the hands of Ehrenberg, under the respective titles of Peridinium macroceros and P. arcticum. Briefly epitomized, Ceratium tripus and its two leading varieties may be thus distinguished:

C. tripus (normal form), Pl. XXV. Fig. 33.—The two anterior horns much shorter than the posterior one, about equal to the body in length, arched backwards in such a manner that, if continued, their points would cross the hinder and median process; the margin of anterior horns finely and indistinctly denticulate.

Var. α (P. macroceros, Ehr.), Pl. XXV. Fig. 24.—All three horns very long and slender, the two antero-lateral ones usually the longer, sometimes exceeding six times the length of the body, produced first in advance of the body, the right one more so than the left, and then curved round and continued backwards in a straight line and at an angle of divergence from the posterior and terminal horn; denticulation of the margin of the two anterior processes more distinct than in the normal form.

Var. β (P. arcticum, Ehr.), Pl. XXV. Fig. 36.—Horns subequal, very thick, about twice the length of the body, all three curved, strongly and uniformly denticulate; the two antero-lateral horns not produced in advance, reflected backwards at a divergent angle.

Although, seen separately, the three above varieties would seem to lay claim to separate specific recognition, it will be found that every gradation of form connecting the one with the other occurs among examples from the same locality. At the same time it has been observed that while the normal form of Ceratium tripus is most abundant in the vicinity of Bergen, the variety α, macroceros, predominates on the west coast of Norway, while the variety β, arcticum, occurs most numerously in the more northerly latitude of Spitzbergen. The eminent phosphoric properties attributed to the species by Ehrenberg and Michaelis have not been confirmed by the researches of Claparède and Lachmann. According to Dr. Pringsheim, a species closely resembling C. tripus occurs in fresh water in the neighbourhood of Berlin.

The author has recently received from Dr. Wm. J. Gray, F.R.M.S., a sample of "surface skimmings" collected by Count Castracane in the neighbourhood of Fano, in the Adriatic, that is particularly rich in Peridiniidae, Ceratium tripus being the most abundant type, and five other forms, Ceratium fusus, Ceratium divergens, Ceratium eugrammum, Prorocentrum micans, and Dinophysis caudata, being more or less sparingly
represented. Of *C. triplos* the variety *macraceros* is most plentiful, the majority of examples being remarkable for the extreme length and slenderness of their arm-like processes, which in this respect not unfrequently exceed the proportions given at Pl. XXV. Fig. 24. Every gradation from this attenuate variety to the more typical condition, Fig. 33, was encountered, but in no instance the thick-armed variety *arcticum*, whose appendages are apparently specially adapted to preserve the equilibrium of the animalcule in the colder and consequently denser waters of the Arctic seas. An interesting structural feature was elicited in connection with the author's examination of this type. In specimens mounted in the usual manner for future observation the median posterior process was shown to be composed of four longitudinal segments; these under pressure became separated from one another throughout the greater portion or even their entire length, presenting under such conditions the aspect of a fascicle of four rigid, distally divergent setae. This opportunity of becoming personally acquainted with the typical pelagic representative of the genus *Ceratium* was also utilized by the author for the solution of the moot question concerning the composition of its exceedingly brittle indurated carapace or cuirass. It had been previously suggested by Mr. Charles Stewart, of St. Thomas's Hospital, with reference to the accredited capacity of this element to withstand incineration, that it was probably of a siliceous nature, such opinion being endorsed by the author in an account given in the 'Midland Naturalist' for May 1880, of various marine *Infusoria* collected off the coast of Cornwall. The views there expressed, based only on unsupported testimony, are now entirely discarded, for, on putting the matter to the test by heating examples on t alc over a spirit-lamp, it was found that they speedily shrivelled up, and ultimately disappeared, while the more delicate siliceous diatom-frustules and sponge-spicules scattered beside them remained intact. The possibility of the carapaces of these *Ceratia* being composed of silex was thus disproved, and no grounds are left for supposing that their composition is other than corneous or chitinous, as obtains in the carapaces, loricæ, or capsular elements of all the more familiar infusorial species. Yet additional testimony in support of the view now advocated is afforded by the fact that the remains of several reputed species of *Ceratium*, *C. pyrophorum* and *C. delitiense*, have been obtained as fossils in flints belonging to the cretaceous formation. It is a well-known fact to geologists that silica in its first state of combination is entirely eliminated from these deposits, and is present only in its recombined and concrete form. It may be hence consistently maintained that the *Ceratia* met with in the chalk could not have possessed siliceous tests.

Ceratium furca, Ehr. sp. Pl. XXV. Fig. 31.

Cuirass subtriangular, longitudinally striate, bearing three horn-like processes, the two antero-lateral ones directed straight forwards, not exceeding the body in length; the median posterior process straight and slender, twice the length of the anterior ones. Entire length 1-120".

HAB.—Salt water. Colour yellow.

Claparède and Lachmann include in this species both the *Peridinium furca* and *P. lineatum* of Ehrenberg. The dimensions of the last-named type are however so much smaller, 1-380" only, that it seems highly probable that the two are distinct. The present form, according to the last-named authority, is eminently phosphorescent. Although usually regarded as entirely marine, M. Werneck has reported the occurrence of an apparently identical species in fresh water in the vicinity of Salzburg.

Ceratium biceps, C. & L.

Cuirass subtriangular, striate longitudinally, bearing three horn-like processes, neither of which exceed the length of the body, the two anterior
ones directed forwards in a straight line, one longer than the other, closely approximated at their bases. Length 1–120".

This species most closely approaches C. furca, and is not improbably a variation only of that type; provisionally, it may be distinguished from that form by the shorter proportions of the horn-like processes, neither of which exceed the length of the body, and by the close proximity of the two anterior ones, which seem to spring from a common base.

Ceratium fusus, Ehr. sp. Pl. XXV. Fig. 40.

Cuirass elongate-fusiform, armed with two horn-like processes only, each of these about three times the length of the body, and produced in the same plane respectively from the anterior and posterior segments of the cuirass; the posterior process usually straight, the anterior one slightly curved. Length 1–120" to 1–90".

HAB.—Salt water. Colour yellow; highly phosphorescent.

Identical with Ehrenberg’s *Peridinium fusus*. Claparède and Lachmann remark that the customary third horn-like process, though not conspicuously represented, is often present in the form of a short spine or slight protuberance, near the base of the single developed anterior horn. Examples of this species were obtained by the author off Falmouth in July 1879, in connection with the summer excursion of the Birmingham Natural History Society. A distinct ovate endoplasm was observed in a crushed, spirit-preserved specimen.

Ceratium candelabrum, Ehr. sp.

Contour of cuirass resembling that of Ceratium furca; body depressed, greatly dilated, its surface areolate and cribrate, the equatorial furrow straight, the anterior border oblique; the three horn-like processes produced abruptly from the body portion, the basal horn about twice the length of the body, the two anterior ones unequal, neither of them exceeding one-sixth the length of the basal process, their surfaces ornamented with unevenly developed parallel rows of asperities. Total length 1–120".

Ceratium lineatum, Ehr. sp.

Contour of cuirass resembling that of Ceratium furca but of smaller size; its surface ornamented with punctate longitudinal striae, about twelve such striae being included in the half exposed to view. Total length 1–384".

HAB.—Sea water: Newfoundland.

Ceratium eugrammum, Ehr. sp.

Contour somewhat resembling that of C. furca or C. lineatum; surface of cuirass longitudinally striate, the intervals cribrate, not areolate; body conical, tapering gradually into the straight, posterior or basal, horn-like process, which equals the body in length; the two frontal processes of unequal length, both shorter than the body. Total length 1–180".

HAB.—Salt water: Adriatic, with phosphorescent water.
Examples of this species, having an average length of 1–100," are abundantly contained in the sample of surface skimmings from Fano, in the Adriatic, collected by Count Castracane, and placed at the author's disposal by Dr. Wm. Gray. In some, but not all instances, it was observed that the surfaces of the horn-like processes were distinctly serrated.

Ceratium seta, Ehr. sp.

Cuirass bicorne, resembling C. fusus, but longer and more slender; body fusiform, slightly inflated centrally, the anterior portion of this region notched, its posterior one tapering gradually into the basal horn-like process; both horns slender, setaceous, straight, or lunate curved, their extremities truncate, their surfaces roughened or asperate, the front one mostly the longer, often three times the length of the body. Total length 1–120" to 1–72".

HAB.—Salt water: Adriatic, with phosphorescent water.

Ceratium trichoeros, Ehr. sp.

Cuirass with three elongate, setaceous, horn-like processes, the single posterior process straight, truncate, over six times as long as the ovate or subglobose central portion, the two anterior ones recurved, obtusely pointed, exceeding eight times the length of the central body, all distinctly asperate; equatorial groove obliquely directed, parallel with the anterior border of the cuirass; colour yellowish-brown. Length of body, without horns, 1–864"; total length 1–120" to 1–96".

HAB.—Salt water: Adriatic (September).

Excepting for its minute size, this species, briefly characterized by Ehrenberg in the 'Monatsbericht Berliner Akademie' for the year 1859, does not appear to differ materially from the slender-armed variety of C. tripes previously recorded.

Ceratium longicorne, Perty. Pl. XXV. Fig. 26.

Cuirass bearing four horn-like processes, of which three, one longer median and two shorter antero-lateral ones, are produced from the anterior, and one long median process from the posterior segment; entire surface of cuirass and horn-like processes finely and evenly asperate; a red eye-like pigment-spot frequently developed at the anterior extremity of the body. Length 1–120" to 1–90". HAB.—Fresh water.

This species, while first associated by Perty with the above-named title, was afterwards identified by him with the Ceratium macroceras of Schrank, and under which designation it is figured and described in his 'Kleinster Lebensformen,' in the year 1852. That name, however, so closely approaches the previously introduced C. macroceras distinctive of the marine three-horned variety so named by Ehrenberg, that the retention of Perty's later title in the present instance has been decided on. A characteristic feature by which this form may be immediately distinguished from every marine or fresh-water representative of the genus Ceratium described in this volume, is afforded by the profuse development of the horn-like appendages of the cuirass, no other type as yet encountered possessing more than three such processes. The distribution of the animalcule, as with various other forms of Peridiniidae, may be described as cosmopolitan. First reported from Germany and the Bernese Alps.
by Schrank and Perty, a type indistinguishable from it was obtained in the neighbourhhood of Calcutta, in September 1859, by Major, now Colonel, Stuart-Wortley, as shown by delineations of the same supplied by him to Mr. Carter, copies of which are in possession of the author. Quite recently again, August 1879, examples according in all essential details with the Bernese and Indian form, have been received by the author through Mr. J. Levick and Mr. Thomas Bolton, from the Olton Reservoir near Birmingham. In the specimens personally examined, it was found that the surfaces of the body and each of the four horn-like prolongations were distinctly asperate. Such ornamentation, although not recorded of the Continental or Indian examples, may have existed, but escaped the notice of their recorders in consequence of the employment of insufficient magnifying power; or, as in the case of C. tripus, it may be the outcome only of local influences. An interesting circumstance connected with the discovery of this type in British waters is connected with the fact that a Rotifer, Anurea longispina, also new to this country, was simultaneously met with, in which long spinous processes, similar in number, proportions, and plan of disposition, are developed from the surface of the carapace. The interesting Entomostracon Leptodora hyalina, hitherto unknown to Britain, was likewise derived from the same locality.

Ceratium Kumaonense, Carter. Pl. XXV. Fig. 25.

Cuirass subtriaingular, with two anterior and one posterior straight and massive horn-like processes; one of the anterior horns axially directed and, together with the posterior one, equalling the body in length; the second or antero-lateral horn produced obliquely, not half the length of the other two; all three of these processes finely and evenly serrated. Colour reddish-brown. Entire length 1–125". HAB.—Fresh water.

This species, described by Mr. Carter in the 'Annals and Magazine of Natural History,' vol. vii. 1871, was obtained in the lakes of Kumaon, Hindostan, at an elevation of from 4000 to 6500 feet above the sea-level, occurring there in such abundance that the ordinary blue colour of the water was temporarily turned by their presence to rusty red. From *Ceratium furca*, with which it most nearly corresponds, this type is to be distinguished by the serration and the shorter proportional lengths of the horn-like processes.

Genus VII. DINOPHYYSIS, Ehrenberg.

Animalcules encuirassed, having a transverse annular ciliated furrow close to the posterior extremity, and joining this on the ventral surface a raised longitudinal perpendicular crest consisting of two membranous plates, from the groove between which a single long flagellum takes its origin. Inhabiting salt water.

It was first supposed by Ehrenberg that the animalcules referred by him to this genus were most nearly allied to the Ophrydinae (*Ophrydium* and *Vaginicola*) though he afterwards assigned them to their true places as here indicated. At the same time the position and character of the cilia and flagellate appendage were not determined or represented by him, although he predicated their existence in consequence of the movements they exhibited. Claparède and Lachmann, to whom we are indebted for a more accurate definition of the genus, and who have added to it many new specific forms, fancifully compare the contour of its representatives to small lidded

* J. Levick on a new Rotifer, 'Midland Naturalist,' October, 1879.
jugs; adopting this simile, the inflated anterior portion is likened to the body of the jug, the narrow discoidal part behind the annular furrow to the lid, and the perpendicular membranous crest to the handle.

Dinophysis atlantica, Ehr.

Cuirass ovate, urceolate; its surface densely shagreened, posterior segment operculum-like, dilated, ventral plates with transverse decurrent linear thickenings. Length 1–432". HAB.—Salt water: Newfoundland.

Excepting for its larger size this species is described by Ehrenberg * as corresponding closely with *Dinophysis Michaelis*.

Dinophysis acuta, Ehr.

Cuirass ovate, acuminate posteriorly, the anterior margin plane, its surface granulate. Length 1–576".

HAB.—Salt water: Baltic Sea, near Kiel (Ehr.).

As originally figured and described by Ehrenberg,† the anterior and posterior extremities have been reversed in both this and the succeeding species, *D. Michaelis*.

Dinophysis Michaelis, Ehr.

Cuirass ovate, rounded posteriorly, the anterior border plane, slightly wider; surface granulate. Length 1–576".

HAB.—Salt water: Baltic Sea, near Kiel (Ehr.).

Dinophysis norvegica, C. & L. Pl. XXV. Fig. 42.

Body compressed, pitcher-shaped, rounded anteriorly, the posterior segment reduced to a simple concave plate; the dorsal and anterior margin supplemented by a thin, longitudinally striate and sometimes denticulate, keel-like crest, which tapers off on the ventral side towards the abrupt termination of the raised ventral plates; ventral plates strengthened by three transverse linear thickenings; surface of cuirass coarsely shagreened. Length 1–400". HAB.—Norwegian coast (Claparède & Lachmann).

Dinophysis ventricosa, C. & L.

Body compressed, pitcher-shaped, ventricose, the anterior extremity frequently pointed, the posterior segment represented by a simple concave plate; no supplementary crest on the dorsal margin; ventral plates with three transverse linear thickenings; surface of the cuirass coarsely shagreened. Length 1–400".

Dinophysis acuminata, C. & L. Pl. XXV. Fig. 43.

Body compressed, pitcher-shaped, rounded anteriorly, more considerably inflated on the dorsal side, supplemented at the antero-ventral angle with

* ‘Monatsbericht Berliner Akademie,’ 1854.
ORDER CILIO-FLAGELLATA.

a projecting claw-like point; no dorsal crest; the posterior segment rudimentary, consisting of a very narrow concave plate; ventral plates strengthened by one or two linear thickenings; surface of cuirass finely shagreened. Length 1–550".

HAB.—Salt water: Norwegian coast (Claparède & Lachmann).

Dinophysis rotundata, C. & L.

Body inflated, compressed, transverse annular furrow set further forward than in *D. acuminata*, the posterior segment being in consequence of proportionally larger size, its margin convex; surface of cuirass coarsely shagreened; no keel-like dorsal crest; ventral plates with two transverse linear thickenings. Length 1–500". HAB.—Norwegian coast (C. & L.).

Dinophysis ovata, C. & L. Pl. XXV. Fig. 43a.

Body ovate, compressed, two closely approximated spine-like processes developed at the anterior extremity, the posterior segment convex, cap-shaped; surface of the cuirass coarsely shagreened; no keel-like dorsal crest; ventral plates extending along two-thirds of the ventral border, strengthened by two linear thickenings. Length 1–625".

Dinophysis laevis, C. & L.

Body suborbicular, compressed, surface of cuirass entirely smooth; ventral plates produced throughout almost the entire length of the ventral border, strengthened with three linear thickenings; posterior segment conspicuously developed, its margin slightly convex; no dorsal crest. Length 1–400". HAB.—Salt water: Norwegian coast (C. & L.).

Dinophysis arctica, Mereschk.

Body broadly flask-shaped, inflated and widest anteriorly, contracted posteriorly, scarcely one and a half times as long as broad; ventral crest largely developed, angular, and obliquely truncate anteriorly, traversed by three transverse lines; surface of cuirass finely shagreened throughout. Length 1–600". HAB.—Salt water: White Sea (Mereschkowsky).

This species closely approaches *D. laevis*, but is to be distinguished from that form by its smaller size, the shagreened character of the cuirass, and by the diverse contour of the ventral plates.

Dinophysis caudata, S. K.

Body suburceolate, the region behind the transverse annular furrow consisting of an inflated, urceolate, basal portion and an abruptly narrowed, subcylindrical, ventrally curved, anterior prolongation; a smooth, narrow ridge produced along the dorsal border of the inflated portion of the posterior segment, and on the opposite or ventral margin of the same region two conspicuously developed fin-like ventral plates; ventral plates angular,
equalling in breadth one-half of the diameter of the body, traversed by two
or three spine-like linear thickenings; the entire surface of the posterior
segment distinctly shagreened; the anterior segment concave, operculum-
like, dilated, its margins delicately striate in a longitudinal direction. Length 1–212ˮ. HAB.—Salt water: Adriatic.

This species has been obtained sparingly among the material originally collected
at Fano, in the Adriatic, by Count Castracane, and recently placed at the author's
disposal by Dr. Wm. J. Gray, F.R.M.S. From all the species previously described
it may be distinguished by the distinct narrower prolongation of the anterior
segment, which is, as it were, added on to the ordinary ventricose body of *D.
norvegica* or *D. acuminata*, and contributes substantially to its total length. The
ventral plates are also of much larger comparative size, resembling, in connection
with the two or three perpendicular spine-like linear thickenings, the elevated
dorsal fin of some Acanthophrygian fish. The smooth narrow ridge developed
along the dorsal margin of the body is undoubtedly homologous with the elevated
crest distinctive of this region in *D. norvegica*.

GENUS VIII. AMPHIDINIUM, C. & L.

Animalcules encuirassed, having a transverse annular, ciliated furrow
situated at the posterior extremity, as in the genus *Dinophysis*, the pos-
terior segment being in a similar manner almost entirely atrophied; the
longitudinal ventral furrow, out of which the flagellum springs, represented
only towards the anterior extremity, and not joining the transverse annular
one; no salient ventral plates. Inhabiting salt water.

Amphidinium operculatum, C. & L. Pl. XXV. Figs. 44–46.

Body oval, depressed, the ventral side slightly flattened, the dorsal one
convex; posterior segment rudimentary, operculum-like; the larger anterior
portion frequently containing a central dark brown structure, possibly the

Claparède and Lachmann found in company with the normal animalcules, as
above described, smaller perfectly transparent examples, having in some instances a
pyriform, and in others an almost orbicular contour; these they regard as mere
younger conditions of this species.

GENUS IX. PROROCENTRUM, Ehrenberg.

Animalcules encuirassed, cuirass consisting of a single continuous piece,
not divided as in the preceding genera by a transverse annular furrow;
a stiff spine or tooth-like process usually developed at the anterior extremity
close to the insertion of the single flagellum. Inhabiting salt water.

Prorocentrum micans, Ehr. Pl. XXV. Figs. 37–39.

Cuirass oval, compressed, pointed posteriorly, the ventral border
flattened, the dorsal one convex, the anterior margin truncate, armed near
the dorsal angle with a tooth-like process; surface of cuirass apparently smooth in the living state, exhibiting delicate transverse striae when isolated by maceration; colour bright yellow. Length 1–430".

HAB.—Salt water.

According to Ehrenberg this species is highly phosphorescent. Claparède and Lachmann have however failed to confirm the observations of the German authority.

Prorocentrum lima, Ehr.

Cuirass ovate, inflated and rounded posteriorly, becoming gradually narrower towards the anterior region; the anterior border slightly emarginate; surface sparsely asperate. Diameter 1–1152" to 1–864".

HAB.—Salt water, Adriatic. Colour yellowish-brown.

Doubtful Species.

The minute *Prorocentrum viridis* of Ehrenberg, reported to be of ovate or sub-orbicular form with a rounded posterior and shortly pointed anterior extremity, enclosing green granules, length 1–1100", inhabiting the Baltic, is insufficiently characterized for identification as a representative of this genus.

Genus X. DIMASTIGOaulax, Diesing.

Animalcules free-swimming, encuirassed, traversed by an equatorial ciliated furrow; flagella two in number, issuing from the same point of origin in the equatorial groove; cuirass extended into horn-like prolongations.

Excepting for the presence of the two flagella, the as yet single known representative of this genus corresponds in form and structure with those of *Ceratium*.

Dimastigoaulax cornutum, Ehr. sp. Pl. XXV. Figs. 51 and 52.

Cuirass compressed, quadrilateral, the dorsal surface convex, the ventral one concave; the anterior segment bearing two nearly straight horn-like processes, and the posterior a single short median one, neither of them exceeding one-half of the diameter of the body; flagella subequal, equalling or surpassing the body in length. Length 1–280" to 1–140".

HAB.—Fresh water; colour brown or slightly green.

This species, which is synonymous with the *Peridinium cornutum* of Ehrenberg, *Ceratium hirudinella* of Dujardin, and *Ceratium cornutum* of Claparède and Lachmann, has been selected by Diesing * as the type of the present genus on the strength of the evidence concerning its possession of two flagella, yielded through the investigations of Lieberkuhn and Claparède and Lachmann. It must be at the same time noted that this evidence is by no means conclusive; the last-named authorities, while figuring two flagella in the drawing, as here reproduced, were by no means certain as to their existence, and did not feel justified, under such circumstances, in connecting the species with a new generic title. The *Peridinium Carolinianum*, found by Mr. J. W. Bailey at Grahamsville, South Carolina, and described under the foregoing title in the 'Smithsonian Contributions to Knowledge' for December 1850, is apparently identical with this type.

In addition to his institution of the new genus Dimastigoaulax for the reception of the species last described, Diesing, *c.*c., has further proposed to subdivide the family of the Peridiniidae as here defined into several other subordinate genera. The definitions submitted not, however, being the outcome of his personal acquaintance with the organisms treated upon, but being based chiefly on the imperfect descriptions of various earlier authorities, are not considered sufficiently reliable for adoption in this treatise. An estimate of Diesing’s proposed innovations in this direction may be gathered from the fact that a new genus, *Heteroaaulax,* is proposed by him for the reception of the animalcules here included under the titles of *Gymnodinium fuscorim,* *Peridinium* (Glenodinium) *inerme,* and *Glenodinium acuminata.* That of *Gonyaulax* for *Peridinium spiniferum,* that of *Glenoaaulax* for *Gymnodinium* (Glenodinium) *aegale,* and that of *Proaulax* for *Gymnodinium corpusculum.* At the same time the ordinary horned and hornless representatives of the two genera *Ceratium* and *Peridinium* are retained under the last-named generic title, while the genus *Glenodinium* is left in the position originally assigned to it by Ehrenberg, the altogether unstable character of the presence of an eye-like pigment-spot being cited as distinguishing it from *Peridinium.*

Fam. II. HETEROMASTIGIDÆ, S. K.

Animalcules free-swimming, bearing one vibratile and one trailing flagellum, these appendages being supplemented by an adoral fringe of cilia; oral aperture distinct, anteriorly located.

Genus I. HETEROMASTIX, J.-Clk.

Animalcules naked, free-swimming, ovate or elongate, highly plastic and changeable in form, metabolic; flagella two in number, inserted close together at the anterior extremity, one directed in advance, locomotive and vibratory, utilized as a tractellum, the other one trailing in the rear, gubernacular or anchorate; a fringe of cilia extending on the ventral surface from the point of insertion of the flagella towards the posterior extremity; endoplasm frequently enclosing a coloured eye-like pigment-spot; oral aperture situated close to the base of the two flagella.

Heteromastix proteiformis, J.-Clk. **Pl. XXIV. Figs. 70 and 71.**

Body highly contractile, changeable in form, mostly elongate fusiform or lanceolate, with a more pointed anterior extremity; flagella long and stout, the anterior one, or tractellum, vibratile, about twice the length of the extended body, the trailing flagellum or gubernaculum about half this length; supplementary cilia produced along a longitudinal groove which extends backwards on the ventral surface from the insertion of the flagella through about one-half of its entire length; a red eye-like spot usually present at the anterior extremity. Length of body 1–500".

HAB.—Fresh water.

This remarkable form, figured and described by Professor H. James-Clark in the Memoirs of the Boston Society of Natural History for the year 1868, is among the most interesting representatives of the Cilio-Flagellate group. With a flexible polymorphic body most closely resembling that of an *Astasia* or *Euglena,* exhibiting likewise the coloured pigment-spot of the latter genus, it possesses the two differentiated flagella,
the one trailing and the other extensile and vibratile, of *Anisonema*, *Heteromita*, or *Heteronema*. Superimposed on this we find an anterior adoral fringe of well-developed cilia, the animalcule thus constituted representing an intermediate condition or annectant type between the above-mentioned simpler Flagellata and the more highly organized Ciliata. Upon this accessory ciliated fringe there appears, according to Professor Clark's description, to devolve the chief task of locomotion, the extended and longer anterior flagellum being used more exclusively as a tentative and prehensile organ. As reported by this authority, the animalcule furthermore displays much intelligence in the use of its tactile flagellum, turning and twisting it about, and feeling with it in every direction with as much seeming consciousness as is shown by an elephant in the control of its proboscis. No details concerning the position or existence of a contractile vesicle or endoplasm have yet been recorded, nor any data relating to the phenomena of development and reproduction. Professor James-Clark has unfortunately omitted to mention whether the endoplasm of this interesting species is coloured green or transparent. It structural affinities being evidently nearest to *Heteronema*, it might be anticipated, in correlation with their structure, that this element is colourless. At the same time, the development of an anterior eye-like pigment-spot is more commonly associated with the chlorophyllaceous forms.

Fam. III. MALLOMONADIDÆ, S. K.

Animalcules free-swimming, bearing a single long, terminal flagellum; entire cuticular surface covered with long, flexible, setose cilia.

Genus I. MALLOMONAS, Perty.

Animalcules free-swimming, oval or elliptic, persistent in shape; cuticular surface indurated, clothed with long, non-vibratile, hair-like setæ; a single long vibratile flagellum produced from the anterior extremity; contractile vesicle indistinctly developed. Inhabiting fresh water.

Mallomonas Plosslii, Perty. Pl. XXIV. Figs. 72 and 73.

Body ovate or elliptical, slightly narrower anteriorly; cuticular surface finely shagreened or crenulate, thickly clothed with fine, hair-like setæ, whose length is less than that of the body; flagellum long and slender, retractile; endoplasm vacuolar, amber colour or greenish yellow; contractile vesicle indistinct, posteriorly located. Length of body 1–1000" to 1–900".

HAB.—Marsh water.

Having, in February 1878, obtained an animalcule from marsh-water from Le Marais, Jersey, which is undoubtedly identical with the *Mallomonas Plosslii* of Perty, the author is enabled to furnish a more accurate description and delineation of this singular form than has been hitherto supplied. Turning attention first to the cuticular investment, its indurated character has been clearly demonstrated through the discovery in abundance in the same water of the empty skins, either nearly whole or in fragments with angular fractures, as left after the decay of the living contents. To these cuticular fragments the hair-like setæ were likewise attached, in a more or less perfect state, indicating not only their rigid and durable consistence, but also their original derivation from this cuticle and not from the underlying endoplasm, as was at first suspected by an examination of living examples only. Perty's testimony respecting the apparently crenulated aspect of the peripheral border was fully confirmed and explained by the employment of a high magnifying power, when it was shown that the whole surface of the cuticle is
GENUS MALLOMONAS.

ornamented or shagreened with closely approximated hemispherical elevations, each of which forms a basis of support to the overlying setae. In this respect the cuticular investment of Mallomonas exhibits a structure corresponding closely with that of many Holotrichous Ciliata, in which the cilia or setæ spring from similar hemispherical cuticular elevations, the cuticle however, in most instances, remaining soft and plastic. Examined in the living state the animalcules were found to exhibit diverse phases of comportment. Sometimes they remained quiescent, with the flagellum entirely retracted within the perforation or oral cleft at the anterior extremity of the hardened cuticle, while at other times this organ was extended and rapidly undulated or vibrated. In the former of these instances the quiescent animalcule with its extended setæ and retracted flagellum, except for its colour, presents an aspect closely similar to that of the Holotrichous Cyclidium glaucoma. On abandoning this quiescent for a motile state, the hitherto erectly extended setæ are, as the animalcule progresses in an even, straightforward course through the water, reflected backwards, as shown at Pl. XXIV. Fig. 73. At first it seemed as though the little creature possessed an active control over these appendages, and could erect or depress them at will. The subsequent determination, however, of the relationship subsisting between the setæ and the indurated cuticle, as already described, precludes such an interpretation, and it is evident that this reflection of the setæ must be accounted for simply by their yielding before the pressure of the water during locomotion.

The interior parenchyma or endoplasm of the specimens examined was found to consist of an apparently homogeneous, clear, greenish-yellow plasma, one or two slowly contracting vacuoles within the same being detected towards the posterior extremity of the body. Other vacuolar spaces, of a non-contractile order, were scattered irregularly throughout its substance. By Perty the animal or vegetable nature of Mallomonas was left undecided. Although the inception of food-particles was not witnessed, the evident control exerted by this organism in its movements leaves no doubt as to its true animal nature.

Stein* has attempted to identify Mallomonas Plessitii with the disintegrated and metamorphosed zooids of Synura uvella. Such an identification, however, in face of the evidence here brought forward; cannot be maintained, Mallomonas proper never possesses but a single flagellum, while the characteristic setæ exhibit a uniform size and symmetrical plan of disposition altogether distinct from that pertaining to the metamorphosed zooids of Uvella, as figured by this authority.

Supplementary Species.

Fresenius† has figured and described an animalcule which he refers to this form, which on further investigation will probably prove to be a second species. The hair-like setæ in this type are represented as fully equal in length to or longer than the body, and comparatively few, thirty being the greatest number counted by him, while considerably less are given in his figures; the two anterior of these are, however, described as being usually directed forwards, like antennæ, on each side of the flagellum. It is proposed to provisionally distinguish this animalcule by the title of Mallomonas Fresenii. A delineation of this species or variety, reproduced from the figures of Fresenius, is given at Pl. XXIV. Fig. 74.

Fam. IV. STEPHANOMONADIDÆ, S. K.

Animalcules free-swimming, bearing a single terminal flagellum, the base of which is embraced by a brush-like fascicle or uninterrupted circular wreath of cilia.

* 'Infusionsthiere,' Abth. iii., 1878.
† 'Beiträge zur Kenntniss mikroskopischer Organismen,' Frankfort, 1858.
ORDER CILIO-FLAGELLATA.

Divested of their flagellate appendages, the as yet but little known representatives of this small family group would bear a marked resemblance to such free Peritricha as Strombidium and Halteria, and it is not improbable that the transition or line of evolution from the Flagellata to the above-named group of the Ciliata is accomplished in this direction.

GENUS I. STEPHANOMONAS, S.K.

Animalcules free-swimming, more or less ovate, bearing a crown or wreath of cilia at the anterior extremity of the body, from the centre of which a single persistent flagellum takes its origin; the remaining surface of the cuticle entirely smooth.

This genus is instituted for the form referred with some doubt by De Fromentel * to the genus Trichomonas under the title of T. locellus; the symmetrical, crown-like disposal of the cilia and single flagellate appendage at the anterior end of the body serve at once, however, to distinguish it from all the members of that generic group. It is possible that the Asthmatus ciliaris of Salisbury is identical with, or closely allied to this same form, though in that type both the flagellum and cilia appear to be much more fugacious in character.

Stephanomonas locellus, From. sp. Pl. XXIV. Fig. 69.

Body ovate or pyriform, truncate and slightly narrower anteriorly; about twice as long as broad, the posterior region rounded and inflated; ciliary wreath symmetrical, encircling the anterior border; flagellum thickest towards the base, scarcely exceeding the length of the body; endoplasm transparent, granular. Length 1–800". HAB.—Fresh water.

This species, as above intimated, is identical with the Trichomonas locellus of De Fromentel. The Trichomonas minima of the same writer, somewhat resembling the present form, but of apparently considerably smaller size, and in which the central flagellum was not distinctly observed, represents possibly a second species of the genus Stephanomonas. De Fromentel's Trichomonas hirsuta, with non-vibratile cilia clothing the entire cuticular surface, is apparently more closely related to his own Trichonoma hirsuta, presently described.

GENUS II. ASTHMATOS, Salisbury.

Animalcules free-swimming, ovate or spherical, bearing a terminal crest or brush-like fascicle of long, vibratile, retractile cilia, which is supplemented by a central, long, extensile flagellum or proboscis-like process; the remaining cuticular surface naked, soft and plastic, permitting the body to assume various outlines.

The aspect of the as yet single known species of this genus, as described and figured by Dr. Salisbury in Hallier’s ‘Zeitschrift für Parisitenkunde,’ Bd. iv. 1873, conforms so closely, when the flagellum or so-called proboscis is retracted, with such Ciliata as Strombidium or Mesodinium, that it was at first proposed to refer the type to the Peritrichous order. The supplementary appendage named, however, agrees so essentially in nature with that of an ordinary but somewhat thickened flagellum, and the cilia themselves possess in their retractile capacity so distinct and it may be

* 'Études sur les Microzoaires,' Paris, 1876.
said less permanent a character than is met with among the Peritricha, that its reference to the present intermediate group, sharing the characters of both the Ciliate and Flagellate infusorial orders, seems desirable. Both the central flagellum and surrounding fascicle of cilia would seem to manifest in their capacity of retraction and temporary obliteration a certain correspondence with the similarly retractile flagellum and associated collar of the order of the Discostomata, which has been already briefly referred to, see p. 329, in connection with that group.

Asthmatos ciliaris, Salisbury. Pl. XXIV. Figs. 62–64.

Body usually ovate or subspherical, but plastic and changeable in form; anterior fascicle of cilia brush-like, long and flexible, the length of the constituent cilia, when fully extended, equalling that of the body; flagellate appendage usually central, but sometimes developed toward one side of the anterior border, thick at its base, and gradually tapering to the apical extremity, exceeding the length of the body when fully extended; endoplasm finely granular, enclosing one or more vacuolar spaces or nucleolar bodies. Length 1–1200".

HAB.—Occurring as a parasitic form in the mucous fluid of the eyes, nose, and throat of the human subject.

This remarkable animalcule is described by its discoverer, Dr. J. H. Salisbury, in the publication above quoted, as constituting the essential cause of certain forms of hay-fever, which he proposes to distinguish as "infusorial catarrh and asthma." This decision is arrived at by him, not through the detection of the animalcule in connection with a single instance only of the above affection, but from its invariable presence in large quantities in as many as sixty cases successfully treated by him, extending over a period of six years, and in all of which instances the recovery of the patient speedily followed the application of remedies causing the death of the animalcules. The diagnosis of the disease, as given by Dr. Salisbury, may be thus abbreviated: The ailment first attacks the mucous surfaces of the eyes and nose, causing a free secretion of tears, and frequently intense paroxysms of sneezing. From the nasal passages the affection extends to the fauces, larynx, trachea, and to the larger and smaller bronchi; burning heat and irritation, accompanied by violent coughing, attend its arrival at the first-named locality, while upon reaching the larger bronchi the symptoms exhibited are very similar to those of "catarrhal fever." Finally invading the smaller bronchi and air-cells, asthmatic symptoms predominate, associated with intense suffering, which is more particularly aggravated by exposure to the night or evening air. Relief was invariably afforded and a speedy cure effected in even the most distressing cases by the frequent inhalation, every hour or two, of a solution of either carbolic acid, tincture ferri chloride, sulphuric, hydrochloric, or nitric acids, the solution in either case being sufficiently weak to avoid irritation during the inhalation. Two grains of quinia sulphate every four hours, or twenty drops of tincture ferri chloride in a glass of water morning, noon, and night, further accelerated the recovery of the patient. The sputa or mucus from the affected parts, examined before and after the first inhalation, demonstrated the presence in the former instance of the animalcules in an actively motile state, while in the latter instance they were mostly dead or motionless, and speedily succumbed to further applications of the remedy. In connection with the more ordinary and milder form of hay-fever, occurring usually during the latter end of May and through June, accompanied by violent sneezing and painful inflammation with the corrosive discharge from the nasal mucous membrane, Professor Helmholtz* has detected the presence within the nasal

* See 'Nature,' May 14th, 1874.
secretion of innumerable vibrio-like bodies, not observable at other times; these were readily destroyed and the hay-fever symptoms cured by administration three times daily, with a nose-douche, of weak solution (1:800) of sulphate of quinine. The best effects were obtained through applying the solution in a tepid form.

The manner in which Asthmatos ciliaris reproduces its kind is, in accordance with Dr. Salisbury's account, somewhat remarkable. A single young one at a time is, he relates, developed inside the parent, and is when mature discharged posteriorly through the body-wall of the latter. His woodcut illustration of this liberation of the newly formed animalcule, reproduced at Pl. XXIV. Fig. 64, would seem, however, to represent an instance of ordinary transverse fission similar to that exhibited by Halteria or Strombidium, and in which the body, becoming elongate, is constricted centrally, the constriction being accompanied by the growth of a new circlet of cilia. The newly produced zooids are described as being much more active than the older ones, rolling from side to side in an oscillating manner, while the movements of the parents are chiefly tremulous or vibratory.

So recently as November 1880, the author's attention has been directed by Dr. Joseph Leidy to a communication concerning this singular organism contributed by him to the 'American Journal of Medical Science,' p. 85, for the year 1879. In this communication the claim of Asthmatos for recognition as an independent protozoic structure is not admitted, Dr. Leidy expressing himself satisfied that the so-called animalcules, as first described by Dr. Salisbury, represent merely detached ciliated epithelial cells from the air-passages, more or less modified by the catarhhal affection. This decision he arrives at not merely from an analysis of Dr. Salisbury's description and accompanying figures, but—having been himself affected by an autumn catarrh for many years—through an intimate acquaintance with an apparently identical organism produced abundantly in his own person, which he unhesitatingly identifies with ordinary or more or less deformed ciliated epithelial cells. While the evidence submitted by Dr. Leidy is here accepted as strongly supporting this epithelial interpretation, one or two points connected with Dr. Salisbury's original description of Asthmatos leave room for justifiable doubts as to whether or not two distinct organisms have been examined by these respective observers. Thus, the production of young from the parent's body, or, as it is here interpreted, the phenomenon of transverse fission accompanied by the development of a posterior ciliary circlet, recorded by Dr. Salisbury, is altogether at variance with the ordinary compartment of detached epithelial cells; added to which it must be observed that in none of the numerous figures given by Dr. Leidy is any indication given of the so-called proboscis or flagellate appendage which constituted an essential feature of the innumerable examples examined by Salisbury. It may be further mentioned, that reference is made by Dr. Leidy to a communication, entitled 'Rhizopods (Asthmatos ciliaris) a cause of Disease,' published by Dr. Ephraim Cutter, of Boston, in the 'Virginia Medical Monthly' for November 1878, and in which this last-named authority having, in company with Professor P. F. Reinsch of Erlangen, examined numberless examples, arrives at the conclusion that the organism is a Protozoon allied to Actinophrys, referring the more precise identification of its nature and position to Dr. Leidy. That infusorial animalcules exist which correspond in all essential points with the isolated cellular elements of ciliated epithelium, is abundantly manifested in such isomorphic types as Magosphera planula and Lophomonas blattarum, which forms again, excepting for the presence of the more ordinarily developed flagellate appendage, the Asthmatos ciliaris of Dr. Salisbury closely resembles.

Fam. V. TRICHONEMIDÆ, S. K.

Animalcules free-swimming, bearing a single terminal flagellum, the remainder of the cuticular surface more or less completely clothed with cilia.
The members of this group, as typified by the genus *Trichonema* of De Fromentel* may be said to bridge over the gap between the ordinary Flagellata and Holotrichous Ciliata, in the same manner as the *Stephanomonadidae* connect them with the Peritricha. In the absence of the flagellum the animalcule in question would scarcely be distinguished from a minute *Trachelophyllum* or other representative of the Holotrichous order.

Genus I. Trichonema, De Fromentel.

Animalcules free-swimming, more or less ovate, elastic and changeable in form, bearing a single flagellum at the anterior extremity; the entire cuticular surface clothed with short cilia; oral aperture distinct, situated at the base of the flagellum.

Trichonema hirsuta, From. Pl. XXIV. Figs. 65 and 66.

Body when extended subpyriform or ovate, most usually rounded and inflated posteriorly, narrower and attenuate anteriorly, contracting to an almost globular form; endoplasm hyaline, granular; flagellum long and slender, about twice the length of the body, rigid at its base, very flexible and undulating at its distal extremity; cuticular cilia short and apparently non-vibratile; oral orifice represented by an obliquely oval excavation, situated at the base of the flagellum; contractile vesicle posteriorly located.

Length 1–800". Hab.—Fresh water.

Genus II. Mitophora, Perty.

Animalcules free-swimming, persistent in shape, elongate-ovate or pyriform, bearing a single terminal flagellum which is supplemented by a lateral or more or less complete peripheral fringe of vibratile cilia.

In the single type referred to this genus by Perty, a considerable range of variation is, in accordance with his accompanying figures, exhibited in the development of the accessory cilia. In some instances these appendages are represented as forming a short lateral fringe only, while in others they constitute an almost complete peripheral series. It would seem, indeed, not altogether improbable that these cilia entirely clothe the cuticular surface as in *Trichonema*, from which generic type it would then be distinguished only by its persistent shape.

Mitophora dubia, Perty. Pl. XXIV. Figs. 67 and 68.

Body clavate or pyriform, sometimes curved, from two to three times as long as broad; flagellum produced from the thicker of the two extremities, sometimes with a knob-like distal termination; lateral ciliary fringe conspicuous, variably developed; endoplasm enclosing green granules. Length 1–450". Hab.—Fresh water; movements slow and rotatory.

Some uncertainty is attached to the identification of the anterior and posterior regions of this animalcule, Perty correlating with the latter the extremity bearing the flagelliform appendage. In one of his figures, however, a notch-like excavation is indicated close to this organ, and this not improbably represents an imperfectly observed oral aperture.

* *Études sur les Microzoaires,* Paris, 1876.
APPENDIX TO VOL. I.

THE MYXOMYCETES OR MYCETOZOA.

At pages 41 to 43 and 193 of this volume (published in Parts I. and II., October and November, 1886), the Myxomycetes or Mycetozoa have been somewhat extensively referred to as exhibiting, in accordance with the researches of De Bary and Cienkowski, so close an affinity with the typical Flagellate Infusoria that they cannot be consistently retained in their old place among the Gasteromycetous Fungi, but must be advanced to a position among the Protozoa at no very remote distance from the group Spongida. In the pages of 'Grevillea,' for December 1886, the editor, Dr. M. C. Cooke, has, as a mycologist, lodged a somewhat strong protest against the proposed transfer, arguing that more substantial evidence than a mere citation of these continental authorities is required to prove the animal nature of these organisms. In the 'Popular Science Review' for April 1881,* the author has, in a résumé of the structural and developmental features of the Myxomycetes, fully replied upon all the points raised by Dr. Cooke, and added to the evidence previously adduced the record of a recent personal investigation of the developmental phenomena of several Myxomycetan types, including more especially the Physarum tussilaginis of Berkeley and Broom,† originally discovered in this country by Mr. Thomas Brittain of Moss-side, Manchester, and to whom the author is indebted for the receipt of authenticated specimens. The results obtained through the careful cultivation of the spores of this species have so fully confirmed and added to the testimony first submitted by De Bary and Cienkowski, that the author is prepared, even more confidently than hitherto, to support the animal interpretation of their nature and affinities. A brief abstract of the developmental data recorded by the author in connection with this species is herewith reproduced.

The spores in question—primarily enclosed in a depressed sessile sporangium having a delicate membranous wall studded with minute stellate spicules‡—were sown in distilled water on ordinary slides, covered with thin glass, and kept when not under direct examination in a moist chamber. So soon as within seven hours after wetting them, or indeed directly following their deposition on the slide, an examination revealed the companionship of innumerable quiescent Bacteria, with a more or less abundant sprinkling of spores other than those of Physarum, and of considerably smaller size. The spores specially sown, having a diameter of 1-2000" to 1-1500'', were found, under high magnification, to consist of an outer wall of considerable thickness, finely echinulate externally, and exhibiting, by transmitted light, a dark amber or chitinous coloration. The protoplasmic contents rarely entirely filled the outer shell, but remained separated from it by a greater or less number of angular interstices. A central spheroidal nucleus, with a contained nucleolus, one or more large refringent corpuscles, and numerous smaller granules, represented the sum-total of the recognizable internal elements. By the end of the second day active life had already dawned upon the scene. Bacteria were swiftly propelling themselves to and fro in all directions; one or two biflagellate monads, Heteromita, whose development was subsequently traced from certain of the smaller spores above mentioned, glided slowly along, dragging their posterior flagella, "gubernacula," cablewise behind them. Sparsely scattered amongst the spores of the Myxomy-

‡ 'Pop. Sci. Rev.,' pl. iv. figs. 30-35.
APPENDIX.

471

cetan were presently observed isolated hyaline protoplasmic spheres having the same diameter and structure as the contents of the spore-cases, just described. In a little while the exit of one of these hyaline spheres from the echinulate spore-cases was witnessed, and the relationship between the two substantially established.

By the termination of the third day, these protoplasmic spheres had much increased in number, some of them exhibiting feeble amoeboid movements. An additional factor had, however, now appeared upon the scene in the form of a vermicular monadiform organism, having a length of 1-1250" to 1-1000", and which progressed somewhat clumsily through the water revolving on its longitudinal axis. A spheroidal nucleus, with its enclosed nucleolus, was observable towards the anterior extremity, and a single rhythmically contracting vesicle at the opposite region of the body. The derivation of these monadiform beings, from the extruded protoplasmic spheres, was immediately suspected, and the correctness of this inference soon substantiated. Selecting an isolated and recently extruded sphere, it was carefully watched. For a considerable interval the newly released germ confined its signs of vitality to a feeble expansion and contraction of its peripheral margin, and to the rhythmical pulsations of its contractile vesicle, which, with the spheroidal endoplast, were clearly discernible. As time progressed, alterations in contour were more strongly manifested, though without the germ moving away from the scene of its birth. At length an altogether elongate amoeboid, or vermiform aspect predominated, the nucleus or endoplast being shifted to one extremity and the contractile vesicle occupying the other. Then, all at once, a flickering at one end indicated the development of a flagellate appendage, which in a few seconds became distinctly visible. The vibratile motion of this organ soon caused the body to oscillate, and presently lifting it from its hitherto prone position, it was launched into the surrounding water a free-swimming, elongate monad. During the next few days, similar monadiform germs were developed abundantly from the spores in all parts of the field, and the next step in their ontogeny fully certified. It was found, in fact, that the free-swimming condition of the germs was but of brief duration, and subservient, apparently, only to their local distribution. Within a day or two, the monadiform beings once more betook themselves to a repent mode of existence, the flagella being for a while retained, communicating to them a remarkable likeness to the repent flagelliferous animalcules heretofore described under the generic titles of Mastigameba and Reptomonas. The flagella being next completely withdrawn, the organisms became undistinguishable from ordinary Amoebe, and continued to creep about the field by broad, ovate extensions of their periphery.

An important point yet remained to be solved. De Bary and Cienkowski had declared that during both their monadiform and subsequent amoeboid phases the Myxomycetes ingested and subsisted on solid food. This evidence has been regarded by some writers as extremely doubtful, while by others it has been emphatically denied. A simple experiment, however, soon demonstrated that these two authorities were again completely in the right. Examples, more especially of the repent amoeboid units, had been previously observed, whose bodies contained vacuoles more or less completely filled with ingested Bacteria, which, being produced in numbers prior to the hatching out of the Physarum germs, provided for the Mycetozoa an abundant and ready set feast. The common test of adding pulverized carmine to the water, was speedily followed by its free ingestion by both the natatory monads and the repent amoebiform units, the former incepting it chiefly towards the anterior region of the body, and the latter indifferently at any point of their periphery. As in the case of Bacteria, the smaller particles of pigmentary matter, after inception, were usually collected together within spheroidal vacuoles of the endoplasm, and maintained there the same molecular movements they exhibited in their free condition. The larger particles, on the other hand, remained distributed as more or less distinctly isolated fragments. For the next few weeks, these amoeboid organisms continued to feed and increase in size, and were fairly started on their way towards the succeeding chapter in their ontogeny, viz. their production, through coalescence, of the comparatively colossal but still amoebiform "plasmodia," out of which the spore-receptacles or sporangia are finally evolved.
The points concerning the development and nutritive phenomena of the Myxomycetes thus verified through personal investigation, are accepted by the author as affording the strongest confirmation of his views previously expressed, to the effect that these organisms have nothing whatever to do with Fungi, but are rightly referable to the Protozoic division of the animal series. Among these, their correlation may be accomplished with the utmost ease, their entire life-cycle, indeed, being precisely parallel in kind, though differing in degree, with what obtains among the ordinary Flagellate Infusoria. A primary flagelliferous phase, an intermediate repent amœboid condition, and a final encysted sporiferous state, these three represent the normal life-cycle of either a Myxomycetan or a simple monadiform animalcule. The only distinction manifested on the part of the Myxomycetes, and that, as just stated, being one only of degree, and not of kind, consists in the fact that the final act, that of encystment, and the resolution of the body into spores, is in this group accomplished by a mass of coalescing or conjugating units, which consequently produce a relatively colossal spore-receptacle or sporangium—the so-called Fungus—while in the case of the typical Flagellata it is an isolated monad, or two or a few conjugated units only, that build up the relatively minute, but otherwise morphologically and physiologically identical reproductive structure.

In every structural detail, and in every successive stage of their life-history, the Myxomycetes or Mycetozoa, from their first exit from the spore until their final resolution into similar reproductive elements, may be consistently correlated with the typical Protozoa, and with them alone. While in their compound aggregation, their production of a horny rete or capillitium, and frequent excretion of spicular elements, a departure is made in the direction of the Sponges, the simply flagellate condition of the spore-derived units, and the capacity possessed by them to ingest food-substances at all parts of their periphery, demonstrate their nearest affinity with the simple Flagellata Pantostomata, and of which they may be accepted as representing the most complex factors.

This decision arrived at by the author concerning the affinities of the Myxomycetes receives additional and highly substantial support in connection with the description, by Surgeon-major D. D. Cunningham, of the life phenomena of certain microscopic organisms developed in the intestinal canal and faecal evacuations of man, cows, and other animals, recorded in the 'Quarterly Journal of Microscopical Science' for April 1881.* Under the title of Protomyxomyces coprinarius, is therein described an organism which, while presenting an infinity of polymorphic expressions, is reducible in a like manner to the three component terms common to the two groups of the Myxomycetes and ordinary monads, and which, indeed, as intelligently recognized by Dr. Cunningham, occupies a position precisely midway between these two series. With the typical Myxomycetes, Protomyxomyces agrees in so far as that the usually relatively large sporangium represents the final disintegration into spores of a multitude of closely associated amœboid elements, surrounded by a common membranous envelope studded with organic granules, these amœboid elements having again commenced existence as simple flagellate monads—Dr. Cunningham's so-called "zoospores." From the typical Myxomycetes, on the other hand, Protomyxomyces differs in that the amœboid beings thus building up the compound sporangium do not coalesce intimately with one another so as to form a common plasmodium, but, while closely approximated, remain individually distinct, each amœboid unit separating into an independent spore-mass after the manner of the typical Flagellata.