MARINE PROTOZOA OF THE PHILIPPINES

By Hilario A. Roxas

Of the Department of Zoology, University of the Philippines, Manila

SEVENTEEN PLATES AND TWO TEXT FIGURES

The general thesis that smaller plankton, both animal and vegetable, is practically the sole food of young marine fishes, has been proved beyond doubt by studies of the stomach contents of these animals. Plankton, likewise, serves as food for the adults of many species of fishes. Herrings, sardines, and mackerels are primarily plankton feeders. Even such large sea animals as the whales, and a number of sharks as well as many bivalves—the oysters, for example—subsist exclusively on plankton organisms.

Authorities estimate that nearly 90 per cent of commercial fishes have pelagic, that is, surface-floating eggs. Only in the rarest instances does a fish hatched from a buoyant egg ever grow large enough to descend to the bottom in the precise locality where the egg that gave it birth was spawned. After exhausting the yolk material of the egg, the young fish must rely on the microscopic plankton organisms available at its place of hatching for the continuation of its existence. It is, therefore, essential that we know the amount of surface plankton in our waters in order to determine the amount of pelagic fish life that it can sustain. No quantitative plankton studies, however, can be made without at least some sort of systematic qualitative studies. It is sad to admit that the Philippine seas are a mare incognitum as far as the microorganisms of the plankton are concerned.

The earliest work on the protozoa of the plankton in tropical Indo-Pacific waters was that of C. T. Cleve. His material was collected by different individuals in 1897, 1899, and 1900 on a route from Aden to Java, a route from 45° south latitude 22° east longitude to 30° south latitude, and from the last point to 2° north latitude 94° east longitude; and in the Malay Archipelago, from Billiton to Timor. This work was followed by those of Weber Van Bosse, Schmidt, Schröder, and Ostenfeld. In later years Matzenauer wrote on the dino-

1 This article was submitted for publication in the Philippine Journal of Science while the author was chief of the Division of Fisheries, Department of Agriculture and Commerce, Manila.
flagellates of the Indian Ocean; Nielsen(76) and Böhm(12) wrote on the dinoflagellates of the south and western Pacific Ocean, while Marshall(69) wrote on the silicoflagellates and Tintinnoinea of the Great Barrier Reef. Lately Hada(44) made a comprehensive survey of the Tintinnoinea of the western tropical Pacific, obtaining his material from the Palao Islands, Yap, Saipan, Tinian, South China, Java, and Celebes. In spite, however, of several works on the marine protozoa of the tropical eastern, western, and southern Pacific, the China Sea, and the Indian Ocean, no work has been done on the protozoa of the seas in and immediately around the Philippines.

The present paper is a preliminary report on local marine protozoa, based on plankton material obtained weekly from the Bureau of Science Binakayan Experimental Station at Bacoor Bay (Manila Bay), and from one collection from the Marine Biological Station at Puerto Galera Bay, Mindoro. The study was originally undertaken with the end in view of determining the relationship between the rate of growth and fattening of oysters and the volume of planktonic organisms available from the water. Ultimately it is hoped to tie up the volume of planktonic organisms with the seasonal abundance and movement of herrings and sardines which are very important Philippine fisheries. The present report is not intended as a final work but merely as an invitation to other workers to collaborate in the huge task of solving our very numerous oceanographic and marine problems. Problems concerned with temperature, pressure, direction and force of wind, amount of rain, sunshine, clouds, specific gravity of the sea water, hydrogen-ion concentration, tides, currents, sediments, and turbidity of the water, as well as voluminous chemical, bacteriological, and botanical material, still await the attention, time, and energy of our scientists. All these data are needed if we would know the cause or causes of the distribution, abundance, and horizontal as well as vertical migration of plankton organisms and their effect on the seasonal distribution and abundance of the various fisheries.

Plankton collections were made with a townet of fine bolting cloth No. 20, of 176 mesh to the inch, from an outrigger banca. The plankton collected from each haul is transferred into a small wide-mouthed bottle with sufficient water and fixed in 10 per cent formalin solution. Qualitative studies are carried on in the laboratory.

The survey at Bacoor Bay and Puerto Galera Bay so far has yielded 68 species of marine protozoa. Of these 34 belong to the
order Dinoflagellida of the class Mastigophora (Flagellata), while 32 belong to the order Heterotrichida of the class Ciliata. The genera represented are, *Peridiniopsis*, 1 species; *Diplopeltopsis*, 1 species; *Goniaulux*, 2 species; *Peridinium*, 11 species; *Podolampas*, 1 species; *Ceratium*, 11 species; *Phalocroma*, 4 species; *Dinophysis*, 3 species; *Tintinnidium*, 3 species, two of them new; *Leprotintinnus*, 2 species, one of them new; *Tintinnopsis*, 10 species, two of them new; *Codonellopsis*, 1 species; *Coxliella*, 1 species; *Favella*, 4 species, three of them new; *Epiplocylis*, 3 species; *Metacylis*, 2 species, both new; *Petalotricha*, 1 species; *Rhabdonella*, 4 species, one of them new; *Tintinnus*, 1 species.

These unicellular animals are the larger forms that do not readily pass through an ordinary silk bolting cloth and do not readily disintegrate soon after the haul. A large number of salt-water and brackish-water protozoa, however, are so minute and delicate that they have to be collected with the use of filter paper and treated with standard fixing agents soon after collection. Protozoa of the latter category have not yet been touched.

The protozoa, numerous and abundant as they are in our bays and seas, only rank second to the diatoms in importance as food for other aquatic animals and fishes. We are, therefore, hoping that in the near future our rich marine unicellular plant fauna will also attract the attention of our botanists.

SYSTEMATIC ENUMERATION OF PHILIPPINE MARINE PROTOZOA

Class **Mastigophora**

Order **Dinoflagellida**

Family **Peridiniidae**

Peridiniopsis

Peridiniopsis asymmetrica Mangin

Diplopeltopsis

Diplopeltopsis minor Lebour

Goniaulux

Goniaulux polyedra Stein

Goniaulux digitale Pouchet

Peridinium

Peridinium conicoides Paulsen

Peridinium latissimum Kofoid

Peridinium leonis Pavillard

Peridinium subinerme Paulsen

Peridinium depressum Bailey

Peridinium divergens Ehrenberg

Peridinium obtusum Karsten

Peridinium venustum Matzenauer

Peridinium africanoides Dangeard

Peridinium curtipes Jörgensen

Peridinium pellucidum (Bergh)
Class Mastigophora—Continued.
Order Dinoflagellida—Continued.
Family Peridiniidae—Continued.
Podolampas
Podolampas bipes Stein

Ceratium
Ceratium furca (Ehrenberg)
Ceratium candelabrum (Ehrenberg)
Ceratium pentagonum Gourret
Ceratium dens Ostenfeld & Schmidt
Ceratium fusus (Ehrenberg)
Ceratium tripos (O. F. Müller)
Ceratium breve Ostenfeld & Schmidt
Ceratium macroceros (Ehrenberg)
Ceratium trichoceros (Ehrenberg)
Ceratium contrarium Gourret
Ceratium molle Kofoid

Family Dinophysidse
Phalocroma
Phalocroma rotundatum Claparede & Lachmann
Phalocroma cuneus Schütt
Phalocroma mitra Schütt
Phalocroma doryphorum Stein

Dinophysis
Dinophysis miles fo. indica Cleve
Dinophysis caudata Kent
Dinophysis hastata Stein

Class Ciliata
Order Heterotrichida
Family Tintinnididæ
Tintinnidium
Tintinnidium primitivum Busch
Tintinnidium cylindrica sp. nov.
Tintinnidium ampullarium sp. nov.
Leprotintinnus
Leprotintinnus nordquisti (Brandt)
Leprotintinnus tubulosus sp. nov.

Family Codonellidæ
Tintinnopsis
Tintinnopsis bacoorensis sp. nov.
Tintinnopsis bütschlii Daday
Tintinnopsis gracilis Kofoid & Campbell
Tintinnopsis loricata Brandt
Tintinnopsis manilensis sp. nov.
Tintinnopsis major Meunier
Tintinnopsis mortensenii Schmidt
Tintinnopsis radix (Imhof)
Tintinnopsis tocantinensis Kofoid & Campbell
Tintinnopsis turgida Kofoid & Campbell
Class Ciliata—Continued.
Order Heterotrichida—Continued.
Family Codonellopsidæ
Codonellopsis
Codonellopsis ostenfeldi (Schmidt)
Family Coxhiellidæ
Coxhiella
Coxhiella longa (Brandt)
Family Cyttarocylidæ
Favella
Favella simplex sp. nov.
Favella philippinensis sp. nov.
Favella elongata sp. nov.
Favella azorica (Cleve)
Family Ptychocyldæ
Epiplocylis
Epiplocysis exquisita (Brandt)
Epiplocylis ralumensis (Brandt)
Epiplocylis undella (Ostenfeld & Schmidt)
Family Petalotríchidæ
Metacylis
Metacylis hemisphaërica sp. nov.
Metacylis kofoidi sp. nov.
Petalotrichia
Petalotrichia major Jörgensen
Family Rhabdonellidæ
Rhabdonella
Rhabdonella amor (Cleve)
Rhabdonella spiralis (Fol)
Rhabdonella brandti Kofoid & Campbell
Rhabdonella fenestrata sp. nov.
Family Tintinnidæ
Tintinnus
Tintinnus perminutus Kofoid & Campbell

Family PERIDINIIDÆ Kofoid

Theca of cell composed of epitheca, girdle, and hypotheca, all divided into plates. An apical pore usually present.

In the epitheca the plates around the apical portion are the apicals, and are usually designated in the descriptions by one accent mark ('); those just above the girdle are the precingulars, designated by two accent marks ("'), while those between the precingulars and the apicals are the anterior intercalaries, designated by (a). These intercalaries never form a complete series around the epitheca. The girdle may be composed of several girdle plates (g) or may be a single piece.

In the hypotheca the plates just below the girdle are the postcingulars (""") and those at the abapical region are the anta-
Typical plates (""""). Plates between the antapicals and postcingulars, called the posterior intercalaries (p), may be present.

A typical member of the Peridiniidae has the following plate formula: 4 apicals, 3 anterior intercalaries, 7 precingulars, 5 postcingulars, no posterior intercalaries, and 2 antapicals; or in the abbreviated form: 4' 3a 7"""" 5'''' 0p 2'''.

Genus PERIDINIOPSIS Lemmermann (1904)

Cell spherical, conical, or lenticular. Plate formula: 3 apicals, 1 or 2 anterior intercalaries, 6 precingulars, 5 postcingulars, and 2 abapicals. Epitheca and hypotheca almost equal and with rounded sides. Girdle equatorial, not displaced and not excavate; provided with lists. First anterior intercalary diamond-shaped, between precingulars 2 and 3. Second anterior intercalary large, occupying almost half of epitheca.

Marine and fresh-water.

PERIDINIOPSIS ASYMMETRICA Mangin. Plate 1, figs. 1a, 1c, and 1d.

Peridiniopsis lenticula STEIN, Org. Infusionsthiere 3 (1883) 1–81, pl. 8, figs. 12–14; pl. 9, figs. 2–4.

Longest diameter 60 to 85 µ.

Common in Manila Bay.

Genus DIPLOPELTOPSIS Pavillard (1913)

Cell lens-shaped. Plate formula: 3 apical, 2 anterior intercalaries, 7 precingulars, 5 postcingulars, and 1 abapical.

Mostly marine and estuarine.

DIPLOPELTOPSIS MINOR Lebour. Plate 1, figs. 2a, 2c, and 2d.

Diplopsalis lenticula BERGII, Morph. Jahrb. 7 (1882) figs. 77a, 77b; SCHÜTT, Peridiniaceae 1 (1896) 21, fig. 31; OKAMURA, Annot. Zool. Japon. 6 (1906–1908) 131, pl. 5, fig. 44; PAULSEN, Nordisches Plankton 17 (1908) 36; Microplancton d'Alboran (1930) 40; LINDEMANN, Natürliche Pflanzenfamilien 2 (1928) 90, fig. 77; WANG and NIE, Cont. Biol. Lab. Sci. Soc. China 8 (1932) 296, fig. 9; MATZENAUER, Bot. Arch. 35 (1933) 453.
Diplopsalis sphaerica MEUNIER, Campagne Arctique de 1907 1 (1910) 47, pl. 3, figs. 19, 22; Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 64, pl. 19, figs. 1–12; pl. 20, figs. 1–4.

Small species with lens-shaped body. Epitheca and hypotheca subsimilar, both with rounded edges. Girdle circular, not displaced and not excavae. Longitudinal furrow with a list, deep, reaching near center of hypotheca. Small anterior intercalary on left side similar to that in *Peridiniopsis asymmetrica*, diamond-shaped between precingulars 2 and 3. Antapical plate single. Theca finely punctate. Cell contents more or less pinkish.

Cell about 53 μ in diameter and about 43 μ high.

Externally this species appears close to *Peridiniopsis asymmetrica*, but the longitudinal furrow is deep, and there is only one abapical plate instead of two.

Genus GONIAULUX Diesing (1866)

Girdle equatorial, decidedly left-handed. Plates: apicals 3 to 5, anterior intercalaries 0 to 2, precingulars 6, postcongulars 6, posterior intercalary 1, antapical (1 or 3' to 5', 0 to 2a 6'' 1p 1'''). First apical usually narrow, bearing a platelet covering apical pore, rest with numerous closely set pores.

Goniaulux polyedra STEIN. Plate 2, figs. 3c and 3d.

Small, angular, polyhedral, with ridges at sutures of plates. Girdle displaced 1 to 2 girdle widths. Surface finely porous. Plate formula 4' 2a 6'' 6''' 1p 1'''. Fourth apical minute, anterior intercalaries ventral. Cell content deep brown.

Length about 60 μ.

Occasionally met with in Manila Bay.
Goniaulux digitale Pouchet. Plate 2, figs. 4a and 4d.

Goniaulux digitale Pouchet, J. Annot. Physiol. (1883) 433, pl. 18, fig. 14; Kofoid, Univ. Cal. Pub. Zool. 8 (1911) 214–217, pl. 9, figs. 1–5; Fauroé-Fremiet and Puigaudeau, Bull. Soc. Zool. 47 (1922) 454–455, fig. 15; Lebour, Dinoflagellates Northern Seas (1925) 92, 93, fig. 28a; Paulsen, Microplancton d'Alboran (1930) 39.

Goniaulux spinifera Stein, Org. Infusionsthiere 3 (1883) pl. 14, figs. 10–14.

Small species, slightly higher than wide. Epitheca subconical, with convex, at times angular sides. Girdle displaced 2.5 girdle widths. Epitheca with stout, blunt, apical horn, hypotheca with 2 strong antapical spines. Plate formula: $3' 0a 6'' 1p 1''$. Theca strongly reticulate. Girdle list narrow but with strong spines.

Length 60 μ, diameter 50 μ.

Common in Manila Bay.

Genus PERIDINIUM Ehrenberg (1832)

Cell cone-shaped, egg-shaped, or flattened. Apex usually with a distinct apical pore and apical horn. Plate formula: 4 apicals, 2 or 3 anterior intercalaries, 7 precingulars, 5 postcirculars, and 2 abapicals.

![Fig. 1. Number of intercalaries and their relation to the precingulars in the groups Orthoperidinium, Metaperidinium, and Paraperidinium.](image)

The classification of this genus is based primarily on the character of the first apical and second anterior intercalary. On the basis of the first apical the members of the genus can be grouped into Orthoperidinium, Metaperidinium, and Paraperidinium. In the group Orthoperidinium the first apical plate is diamond-shaped and is bounded by the first and seventh precingulars and the second and fourth apicals (text fig. 1).

In the group Metaperidinium the first apical is pentagonal and is bounded by the first, second, and seventh precingulars and by the second and fourth apicals. In Paraperidinium the first
apical is hexagonal and is bounded by the first, second, sixth, and seventh precingulars and by the second and fourth apicals.

The genus *Peridinium* has been divided by authors into two subgenera: *Archaperidinium*, in which there are only two anterior intercalaries, and *Peridinium* proper, in which there are three. In the latter the second anterior intercalary may be touching the fourth and fifth, the third and fourth, the third, fourth, and fifth precingulars, or only the fourth precingular. These various relationships are indicated in text fig. 2.

![Orthoperidinium Metaperidinium](image)

![Tabulata Pyroformia](image)

![Conica Paraperidinium](image)

![Oceanica](image)

Fig. 2. Number of intercalaries and their relation to the precingulars in the subgenera of *Peridinium*.

Group ORTHOPERIDINIUM

Section CONICA

In § *Conica* the second anterior intercalary touches precingulars 3, 4, and 5.

Peridinium conicoides Paulsen. Plate 3, figs. 6a to 6d.

Peridinium conicoides Paulsen, Medd. Komm. Havunders. København ser. plankton 1 (1905) 3, fig. 2; Meunier, Campagne Arctique de 1907 1 (1910) 32; pl. 1, figs. 31, 34; Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 40, 41, pl. 17, figs. 23-31; Lebour, Dinoflagellates Northern Seas (1925) 112, pl. 20, figs. 2a-2d.

PERIDINIUM LATISSIMUM Kofoid. Plate 3, figs. 7a to 7e.
Peridinium depressum Pavillard, Resultats Campagnes Scientifiques 82 (1931).

Cell pentagonal in ventral and dorsal views, asymmetrical in apical view, right side more or less larger than left. Epitheca conical, with straight sides and a distinct apical pore. Girdle left-handed, greatly excavate, with list. Hypotheca also with straight sides. Abapical boundary concave, with two solid inconspicuous spines. Longitudinal furrow shallow, not reaching center of hypotheca. Test very finely reticulate. Contents more or less pinkish.

Length about 20 μ, breadth about 58 to 60 μ.
This species differs from P. pentagonum Gran (1902) in being dorsoventrally more flattened and in having a more concave boundary between the two abapical horns. Similar to P. pentagonum in the line separating the anterior and posterior halves of the epitheca being straight and the cell asymmetrical.

Common in Manila Bay during June and July.

PERIDINIUM LEONIS Pavillard. Plate 4, figs. 8a to 8e.
Peridinium leonis Pavillard, Trsv. Inst. Bot. 4 (1916) Lebour, Dinoflagellates Northern Seas (1925) 112, pl. 21, figs. 1a–1d; Paulsen, Microplancton d’Alboran 4 (1930) 70, fig. 41; Matzenauer, Bot. Archiv 35 (1933) 456, figs. 29a–29c; Böhm, Bull. B. P. Bishop Mus. 137 (1936) 44.

Cell more or less pentagonal in ventral and dorsal views, but with a concave abapical side. Epitheca conical, with more or less straight sides. Girdle slightly left-handed, almost circular with a slight anterior excavation. Longitudinal groove wide, with almost straight sides. A small spinelet present at end of left side of longitudinal groove. Hypotheca with straight sides, and two pointed abapical lobes each terminating in a solid spine.
Theca reticulate and spiny, on epitheca appearing as if with more or less parallel lines. Cell contents pink.

Cell about 70 μ high and 65 μ in diameter.

Very close to *P. latissimum* and *P. pentagonum* in general shape. Differs from *P. latissimum* in having the line separating the anterior and posterior halves rugged instead of straight. Unlike the case in *P. conicum* and *P. pentagonum*, the lines separating Plates 1', 1'' and 7', 2' and 2'' on one side and from 4' and 6'' on the other are in the form of a zigzag instead of straight.

Common in Manila Bay.

Peridinium subinerme Paulsen. Plate 4, figs. 9a to 9d.

Peridinium subinermis BROCH, Planktonstudien Mündung Ostsee (1908) 54, fig. 28; MEUNIER, Duc D'Orleans Campagne Arctique de 1907 3 (1910) 40, pl. 2, figs. 43, 44; Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 43, pl. 17, figs. 36-40; LEBOUR, Dinoflagellates Northern Seas (1925) 114, pl. 22, figs. 2a-2f; MATZENAUER, Bot. Archiv 35 (1933) 457; BÖHM, Bull. B. P. Bishop Mus. 137 (1936) 44, fig. 16a.

Cell small, epitheca more or less conical with slightly convex sides. Girdle circular, not excavate, not displaced. Hypotheca with convex sides, with a contour appearing more or less like an inverted helmet. Longitudinal furrow wide, terminating in two tiny spinelets as seen from above, apical pore off center, towards right side, plates on this side of epitheca smaller than those on left. Intercalary striae sometimes broad. Cell contents pink. Theca finely reticulated.

Cell about 45 μ high and 56 μ in diameter.

Common in Manila Bay.

Section Oceanica

In § Oceanica the second anterior intercalary touches the fourth precingular plate.

Peridinium depressum Bailey. Plate 5, figs. 10a to 10d.

Large species with short but broad cell; epitheca symmetrical with sides decidedly concave, provided with a well-developed and conspicuous apical horn and apical pore. Girdle projecting, left-handed, with prominent lists supported by transverse spinelets. Right antapical lobe larger than left. Both antapical horns terminating in spine and each provided on inner side with a tooth continuous with each side of longitudinal furrow. Theca finely reticulate. Cell contents light pink. Globules yellowish pink.

Cell about 142 μ in diameter and about 178 μ long.

Most common in Manila Bay in June.

Section Divergens

First apical pentagonal; second intercalary touching precingular 4 only.

Peridinium Divergens Ehrnberg. Plate 7, figs. 14a, 14b, and 14d.

Peridinium divergens Ehrenberg, Monatsber. Akad. Wiss. (1854) 240, pl. 35a, fig. 24b; Stein, Org. Infusionsthiere (1883) pl. 10, figs. 1–9; pl. 11, figs. 1, 2; Schütt, Natürliche Pflanzenfamilien 1 (1896) 22, fig. 32; Murray and Whitting, Trans. Linn. Soc. 5 (1899) 326, pl. 29, fig. 4; Karsten, Wiss. Ergebn. d. Deuts. Tief.-Exp. 2 (1907) 416, pl. 50, figs. 8, 10a–10c, 11; pl. 52, figs. 4a, 4b, 5a, 5b; pl. 53, figs. 1–3, 6a, 6b; Faure-Fremiet, Ann. Sci. Natur. 7 (1908) 271; Pavillard, Bull. Soc. Bot. 56 (1909) 280; Meunier, Duc. d'Orleans Campagne Arctique 2 (1910) 23, pl. 1, figs. 1–4; pl. 2, figs. 45, 46; Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 12–14, pl. 15, figs. 1–5; Faure-Fremiet and Puigaudeau, Bull. Soc. Zool. 47 (1922) 455–447, fig. 10; Lebour, Dinoflagellates Northern Seas (1925) 127, pl. 26, figs. 2a–2e; Lindemann, Natürliche Pflanzenfamilien 2 (1928) 13, figs. 2, 4; Paulsen, Microplancton d'Alboran (1930) 63; Wang and Nie, Cont. Biol. Lab. Sci. Soc. 3 (1932) 290, figs. 1–2; Matzenauer, Bot. Archiv 35 (1933) 466; Campbell, Journ. Ent. Zool. 26 (1934) 18, fig. 8.

Cell from ventral view more or less pentagonal. Epitheca with convex sides abruptly straightening apically to form a distinct apical lobe. Girdle slightly right-handed, almost circular with a slight concavity on ventral side. Transverse groove with prominent lists. Hypotheca with more or less convexoconcave sides terminating in two hollow apical spines. Longitudinal groove prominent, extending to center of hypotheca, with lists.
Test prominently reticulated with tiny spinelets at junction of reticulation. Cell contents pinkish, turning greenish yellow in formalin.

Length about 90 to 95 \(\mu \), breadth about 56 \(\mu \). The dominant form of *Peridinium* in Bacoor Bay (a part of Manila Bay) toward the end of July.

PERIDINIUM OBTUSUM Karsten. Plate 5, figs. 11a–11d.

Peridinium obtusum Karsten, Deuts. Tief.-Exp. 2 (1906); FAURÉ-FREMIEL, Ann. Sci. Natur. 7 (1908) 233, fig. 9; LEBOUR, Dinoflagellates Northern Seas (1925) 121, pl. 24, figs. 2a–2d; CAMPBELL, Journ. Ent. Zool. 26 (1934) 18, fig. 10.

Cell small, more or less pentagonal in ventral view, but with concave abapical side. Epitheca with almost straight sides. Girdle not displaced or only very slightly left-handed and hardly excavate. Longitudinal furrows reaching well to the hypotheca with one small spine on each side at abapical region. Hypotheca also with straight sides, two shallow antapical horns terminating in spines which project more or less laterally. Theca more or less spiny. Cell contents pink.

Cell about 60 \(\mu \) high and 70 \(\mu \) in diameter.

Common in Manila Bay.

PERIDINIUM VENUSTUM Matzenauer. Plate 6, figs. 12a, 12b, 12d, and 12e.

Cell thin, much flattened in anteroposterior direction. Epitheca appearing on ventral and dorsal view as a regular concave cone. Apical pore elongate. Hypotheca also with concave sides and two hollow abapical horns. Transverse girdle slightly left-handed, much higher on dorsal side than on ventral. Longitudinal groove with a spinelet on each side at its junction with abapical horns. First apical diamond-shaped, of the *Orthoperidinium* type, second anterior intercalary of *Oceanica* type, touching only fourth precingular. Contents light pink, turning greenish-yellow with long preservation in formalin. Theca thin, with fine, widely separate pores.

Length 103 \(\mu \), diameter 78 \(\mu \).

Quite common in Manila Bay during July.

Group **METAPEARIDINIUM**

Section Pyroformia

First apical pentagonal; second anterior touching precingulars 3 and 4 or 4 and 5.
PERIDINIUM AFRICANOIDES Dangeard. Plate 6, figs. 13a, 13c, and 13d.

Peridinium africanoides DANGEARD, Ann. L'Inst. Oceanog. (1927); MATZENAUER, Bot. Archiv 35 (1933) 460, fig. 39; BÖHm, Bull. B. P. Bishop Mus. 137 (1936) 41, fig. b1, b2.

Body pear-shaped; at times slightly angular, theca with a finely reticulated surface. Epitheca with an elongate, prominent, apparently open apical horn. Girdle with prominent lists supported by transverse spines. Hypotheca with two prominent and winged antapical spines. Striae quite prominent and wide between postcingulars and apical plates. Cell contents in life light pink.

This form is exceptional in having 4 anterior intercalaries instead of the usual 3.

Cell with a total length of about 100 µ and a diameter of around 85 µ.

Common in Manila Bay.

PERIDINIUM CURTIPES Jörgensen. Plate 7, figs. 15a to 15d.

Peridinium curtipes JÖRGENSEN, Skr. Schw. Hydrog.-biol. Komm. 4 (1912); LEBOUR, Dinoflagellates Northern Seas (1925) 128, fig. 39; PAULSEN, Microplancton d'Alboran (1930) 64; MATZENAUER, Bot. Archiv 35 (1933) 468, figs. 52a, 52b.

Cell broad but short. Epitheca conical, with distinctly concave sides. Girdle almost spherical, only slightly excavate at ventral side. Transverse furrow with prominent lists supported by spines. Longitudinal furrow narrow. Hypotheca with convexoconcave sides. Abapical region with two horns terminating in small spines. Inner side of horns with prominences and small spines. Left horn larger and wider than right. Theca finely reticulate and with very fine pores. First apical plate pentagonal, second anterior intercalary touching only precingular 4. Thus this species belongs to the *Metaperidinium divergens* type. Cell contents yellowish green.

Length about 85 µ, diameter about 90 µ.

Common in Manila Bay.
Section Paraperidinium

First apical hexagonal; second anterior intercalary touching precingulars 3, 4, and 5.

Peridinium Pellucidum (Bergh). Plate 8, figs. 16a to 16d.

Peridinium pellucidum Schütt, Ergeb. Plankton Exped. 4 (1895) 45; Paulsen, Nordisches Plankton 17 (1908) 49, fig. 61; Microplancton d'Alboran (1930) 66; Bjoeh, Planktonstudien Mündung Ostsee (1908) 44, 45, figs. 15, 16; Arch. f. Protist. 20 (1910) 188, 189, fig. 6; Faure-Fremiet, Ann. Sci. Natur. 7 (1908) 219-221, pl. 15, fig. 9; text figs. 6, 7; Meunier, Duc D'Orleans Campagne Arctique 1 (1910) 30, pl. 1, figs. 28-28; Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 21-23, pl. 15, figs. 30-42; Pavillard, Mem. Trav. Inst. Bot. Univ. Montpellier 4 (1916) 38; Lebour, Dinoflagellates Northern Seas (1925) 23, fig. 2; Matzenauer, Bot. Archiv 35 (1933) 461, figs. 42a-42c.

Small species with epitheca more or less pointed. Epitheca and hypotheca with decidedly convex sides. Girdle almost circular in cross section, slightly right-handed. Longitudinal furrow with one right and two left antapical spines. Striae quite prominent. Theca finely reticulate. First apical plate 5-sided, second apical intercalary 6-sided as stated by Matzenauer. (70)

Cell about 43 μ in diameter and 53 μ high.

Genus Podolampas Stein (1883)

Cell pear-shaped, drawn out apically into an apical horn with a prominent apical pore. Girdle absent. Two strong antapical spines with transverse wings present. Plate formula: apicals 2, anterior intercalary 1, precingulars 6, postcingulars 3, antapicals 4 ("" 1α 6"" 3"" 4""").

Podolampas Bipes Stein (1883). Plate 2, figs. 5a and 5b.

Podolampas bipes Stein, Org. Infusionsthiere (1883) pl. 8, figs. 6-9; Schütt, Natürliche Pflanzenfamilien 1 (1896) 23, fig. 33; Murray and Whitting, Trans. Linn. Soc. 5 (1899) 328; Kofoid, Arch. f. Protist. 16 (1909) 55-58; Okamura, Rep. Imp. Bur. Fish 1 (1912) pl. 2, fig. 37; Lebour, Dinoflagellates Northern Seas (1925) text-fig. 52b; Lindemann, Natürliche Pflanzenfamilien 2 (1928) 101, 101, fig. 87; Paulsen, Microplancton d'Alboran (1930) 74; Matzenauer, Bot. Archiv 35 (1933) 482.

Cell broadly pear-shaped, with a short apical horn. Antapical spines about equal, wings not fused. Intercalary striae very wide.

Cell about 92 μ long, 65 μ in greatest diameter. Occasionally met with in Manila Bay.
Cell dorsoventrally flattened. Transverse furrow usually equatorial, girdle left-handed. Longitudinal furrow usually very wide, occupying a large portion of the ventral surface of the body. Epitheca with one apical horn terminating at an apical pore. Hypotheca with two abapical hollow horns which are open or closed at the end. Test thick, reticulate or striped, with numerous tiny pores. Boundaries of cell plates indistinct. Plate formula 4' 5'' 5''' 2''''.

Subgenus BICERATIUM Gran

With one apical horn and two (rarely three) abapical horns normally closed at tips and directly backward. Right hind horn smaller, rarely shorter than half the left. Epitheca, including horn, much longer than hypotheca.

CERATIUM FURCA (Ehrenberg). Plate 8, figs. 17a and 17b.

Peridinium furca EHRENBERG, Infusionsthierchen als vollkommene Organismen 18 (1838) 256, pl. 22, fig. 21.

Epitheca longer than hypotheca, evenly narrowing into an open apical horn of medium length. Hypotheca shorter than epitheca, with two more or less parallel, pointed, closed, antapical horns. Right antapical horn about half as long as left, both more or less toothed at sides. With deep yellow chromatophores.

Total length, 150 to 160 µ; greatest breadth, 33 to 37 µ.
Common in Manila Bay.
CBRATIUM (Ehrenberg). Plate 3, fig. 18a.

Ceratium candelabrum STEIN, Org. Infusionsthiere (1883) pl. 16, figs. 15, 16; Ostenfeld and SCHMIDT, Vidensk. Medd. 52 (1901) 163; CLEVE, Ark. f. Zool. 1 (1903) 340; OKAMURA, Rep. Imp. Bur. Fish 1 (1912) 7; LEBOUR, Dinoflagellates Northern Seas (1925) 143, pl. 30, fig. 2, text figs. 45b, 45c; BOHM, Arch. f. Protist. (1931) 361, 367, text figs. 1, 2, 24; Bull. B. P. Bishop Mus. 81 (1931) 8, fig. 3; PAVILLARD, Prince Monaco Res. Camp. Sci. 82 (1931) 68, pl. 2, figs. 16a–16d; Nielsen, Dana Exp. Rep. 4 (1934) 8, figs. 6, 7.

Epitheca longer than hypotheca; abruptly narrowing (90°) to form a stout, long, open, apical horn. Hypotheca with two more or less parallel or slightly divergent horns close to their tips. Right antapical horn shorter but very much more than half of left.

Total length, about 265 μ; greatest width, about 76 μ; apical horn, 180 μ; right antapical horn, 48 μ; left antapical horn, about 65 μ.

Found in Puerto Galera Bay, Mindoro, during April.

CERATIUM PENTAGONUM Gourret. Plate 8, figs. 19a and 19b.

Ceratium lineatum var. longiseta Ostenfeld and Schmidt, Vidensk. Medd. 52 (1901) 163, fig. 12; CLEVE, Ark. f. Zool. 1 (1903) 341; OKAMURA, Annot. Zool. Japon. 6 (1907) 127, pl. 3, fig. 7a.

Ceratium lineatum Ostenfeld and Schmidt, Vidensk. Medd. 52 (1901) 163.

Epitheca only slightly greater than hypotheca. Epitheca converging to about 80° and giving rise to a slender, weak-looking, apical horn. Hypotheca short, provided with two parallel, weak-looking, pointed, close, antapical horns. Right antapical greater than one half of left.

Total length about 265 μ; greatest diameter about 55 μ.

Found in Puerto Galera Bay, Mindoro.

CERATIUM DENSI Ostenfeld and Schmidt. Plate 9, fig. 26a.

Ceratium dens Ostenfeld and Schmidt, Vidensk. Medd. 52 (1901) 165, text fig. 16; CLEVE, Ark. f. Zool. 1 (1903) 340; KARSTEN, Wiss. Ergeb. Deuts. Tief.-Exp. 2 (1907) 414, pl. 48, figs. 8a, 8b; BOHM, Bull B. P. Bishop Mus. 87 (1931) 15, fig. 11; Nielsen, Dana Exp. Rep. 4 (1934) 15, fig. 27.
Epitheca less than hypotheca. Epitheca converging to about 85° to produce a strong apical horn open at the tip. Hypotheca diverging, with two antapical horns both closed at the tip. Left antapical short, about 36 μ long, directed more or less laterally. Right antapical more than twice as long, about 80 μ, directed anteriorly, making an angle of about 75° with body wall.

Total length about 190 μ; body about 60 μ long, 60 μ in diameter.

Found in Puerto Galera Bay, Mindoro.

Subgenus AMPHICERATIUM Vanhöffen

Cell long and narrow, only slightly, if at all, dorsoventrally flattened. Right posterior horn rudimentary or absent. Horns normally closed at tips.

CERATIUM FUSUS (Ehrenberg). Plate 9, figs. 21a and 21b.

Peridinium fusus EHRENBERG, Infusionsthiere als vollkommene Organismen 18 (1838) 256, pl. 22, fig. 20.

Ceratium fusus CLAPARÈDE and LACHMANN, Mem. Inst. Nat. 6 (1859) 400, pl. 19, fig. 7; STEIN, Org. Infusionsthiere (1883) 15, figs. 1-8; CLEVÉ, Kongl. Sv. Vet.-Akad. Handl. (3) 32 (1899) 36; (8) 32 (1900) 19; (2) 34 (1900) 20; ÖfV. Kongl. Sv. Vet.-Akad. Förhandl. (9) 57 (1900) 1030; (5) 35 (1901) 14; (7) 35 (1902) 24; AURIVILLIUS, Kongl. Sv. Vet.-Akad. Handl. 32 (1899) 31; SCHRÖDER, Mitt. Zool. Stat. Neapel 14 (1901) 17; OSTENFELD and SCHMIDT, Vidensk. Medd. 52 (1901) 164; JOLLUS, Arch. f. Protistat. 19 (1910) 193, pl. 9, fig. 53; MEUNIER, Mem. Mus. Roy. d'Hist. Nat. 8 (1919) 89, pl. 21, figs. 1, 2; LEBOUR, Dinoflagellates Northern Seas (1926) 146, pl. 31, fig. 1; PAULSEN, Microplancton d'Alboran (4) (1930) 77; BÖHM, Arch. f. Protistat. (1931) 355; Bull. B. P. Bishop Mus. 87 (1931) 14, fig. 10, c-f; NIELSEN, Dana Exp. Rep. 4 (1934) 14, figs. 25, 26; CAMPBELL, Journ. Ent. Zool. 26 (1934) 21, fig. 16.

Epitheca long, regularly narrowing into a long, evenly wide apical horn, often with a tiny knot at tip. Apical horn straight or weakly bent dorsally. Hypotheca with a long left antapical horn not quite as long as the apical horn, and a tiny, very short, rudimentary right horn. Both closed at tips.

Total length, about 278 μ; greatest breadth, about 19 μ.

Common in surface plankton, Manila Bay.

Subgenus EUCERATIUM Gran

Cell broad and flattened, usually anchor-shaped; with two anteriorly directed posterior horns.

Horn normally closed at tip.
CERATIUM TRIPOS (O. F. Müller). Plate 9, figs. 22a and 22b.

Ceraria tripus O. F. Müller, Zool. danicae prodromus (1777); (1871) 206.

Fairly large species with cell anchor-shaped, broad, more or less flattened. Epitheca shorter than wide, with an anterior horn of more or less uniform diameter. Hypotheca with an oblique, but slightly convex posterior border. Right side of hypotheca about 6 or 7 times as great as left side. Antapical horns both pointed and closed at tip, right antapical horn making a more acute angle with the cell body than left. Theca provided with prominent, anastomosing ridges and numerous tiny pores. With greenish-yellow chromatophores.

Cell about 67 μ long, 67 μ wide; total length about 210 μ.

Common in Manila Bay.

CERATIUM BREVE Ostenfeld and Schmidt. Plate 10, fig. 23a.

Ceratium tripus var. brevis Ostenfeld and Schmidt, Vidensk. Medd. 52 (1910) 164, fig. 13.

Fairly large specimen with epitheca longer but much narrower than hypotheca. Left side of hypotheca several times as great as right side. Antapical horns pointed, close, very prominent,
directed more or less anteriorly, their bases making an obtuse angle (90° to 105°) with the sides of the hypotheca. Anterior border of these horns for the greatest part of their length prominently ribbed. Horns normally open at tips.

Total length with apical horn, 132 μ; greatest width, 62 μ; right abapical horn about 100 μ; left abapical horn, about 190 μ.

Occasionally met with in Puerto Galera Bay, Mindoro.

CERATIUM MACROCEROS (Ehrenberg). Plate 10, fig. 24a.

Ceratium macroceros STEIN, Org. Infusionsthiere (1882) pl. 11, figs. 1-11; CLEVE, Kongl. Sv. Vet.-Akad. Handl. (8) 32 (1900) 19; (7) 35 (1902) 24; OSTERFELD and SCHMIDT, Vidensk. Medd. 52 (1901) 167; OKAMURA and NISHIKAWA, Annot. Zool. Japon. 5 (1904) 122, fig. 2; OKAMURA, Annot. Zool. Japon. 6 (1907) pl. 4, figs. 19, 20; LEBOUR, Dinoflagellates Northern Seas (1925) 155, pl. 35; PAULSEN, Microplancton d’Alboran (1330) 87, fig. 54; BÖHM, Arch. f. Protist. (1931) 364; Bull. B. P. Bishop Mus. 87 (1931) 38, fig. 35a; NIELSEN, Dana Exp. Rept. 4 (1934) 25, fig. 59.

Medium-sized, long-horned species. Epitheca shorter than hypotheca, with a long horn very gradually tapering to an open end. Hypotheca with an almost straight, oblique hind margin making an oblique angle with the two antapical horns open at their tips. Antapical horns first diverging obliquely and posteriorly, then taking a turn anteriorly and running more or less parallel with the apical horn. Antapical horns provided with spines at curved portions and open at ends. Theca traversed by numerous irregularly longitudinal ridges and with numerous pores. With yellow chromatophores.

Length of cell body, about 59 μ; width, 55 μ.

Common in Manila Bay.

CERATIUM TRICHOCEROS (Ehrenberg). Plate 10, fig. 25a.

Theca thin, smooth, without ridges or pores; girdle incomplete, only on right oral side; only a tiny remnant of girdle visible on left oral side. Epitheca shorter than hypotheca, with
Roxas: Philippine Marine Protozoa

a long apical horn of almost uniform diameter. Hypotheca with two long, slender, antapical horns making a very obtuse angle with cell body, both open at ends, with yellowish chromatophores.

Cell body about 37 μ long and 44 to 48 μ wide.

This species is easily differentiated from C. macroceros by being much smaller, by the more obtuse angle of the antapical horns with the body, and by the absence of ridges on the theca and spines at the curved portions of the antapical horns.

Very common in Manila Bay.

CERATIUM CONTRARIUM Gourret. Plate 11, fig. 26a.

Ceratium contrarium PAVILLARD, Trav. Inst. Bot. Univ. Montpellier (1905) 53, pl. 2, fig. 1; Bull. Soc. Bot. 54 (1907) 229; BÖHM, Arch. f. Protist. (1931) 365; Bull. B. P. Bishop Mus. 87 (1931) 40; NIELSEN, Dana Exp. Rept. 4 (1934) 27, fig. 67.

Delicate looking form with epitheca shorter than hypotheca. Epitheca converging to about 90° to form a very long, prominent, open, apical horn about 260 μ long. Left side of hypotheca only slightly longer than right. Antapical horns curved and long, directed anteriorly. Left posterior horn making an angle of 125° with the body, right posterior horn making an angle of about 135° with the body. Only left ventral part of girdle distinctly visible.

Length of body, excluding apical horn, 44 μ; greatest diameter, 40 μ; antapical horns, about 120 μ long.

Often met with in Puerto Galera Bay, Mindoro, during April.

CERATIUM MOLLE Kofold. Plate 11, fig. 27a.

Epitheca as long as hypotheca, narrowing to an angle of 75° to form a narrow, slender, gradually tapering, anterior horn which is open. Hypotheca with two more or less curved open horns, right horn making an angle of 130° with its wall, left horn making an angle of 150° with its wall; both horns directed anterolaterally. Posterior border of antapical horns with prominent spinelets. Left side of hypotheca about twice right, giving its posterior border an oblique angle with axis of body.
Total length including apical horn, 144 μ; depth of body, 40 μ; right antapical horn 72 μ long, left, 48.

Common in Puerto Galera Bay, Mindoro, in April.

Family DINOPHYSIDÆ Kofoid and Michener

Body compressed laterally, divided by a seam into two lateral halves. Transverse furrow situated far apically, making epitheca obsolete and much smaller than hypotheca. Epitheca more or less enclosed by upper list which forms a cup. Transverse or cingular lists prominent, directed apically, supported by fine radiating ribs. Longitudinal or sulcal lists wide, supported by few ribs. Apical pore absent. Test usually poroid or with pores.

Genus PHALACROMA Stein (1883)

Small forms with bodies only slightly flattened, wedge-shaped, and egg-shaped in lateral view. Epitheca poorly developed, appearing as a flat lid above transverse girdle. Transverse lists with fine ribs not highly developed as in other genera. Left longitudinal list usually well developed with three spines. Chromatophores absent. Test strongly poroid.

PHALACROMA ROTUNDATUM Claparède and Lachmann. Plate 12, fig. 28.

Phalacroma rotundatum CLAPARÈDE and LACHMANN, Mem. Inst. Nat. Genève 5 (1858) pl. 20, fig. 13; 6 (1859) 409, pl. 20, fig. 16; STEIN, Org. Infusionsthiere (1883) pl. 19, figs. 9–11; pl. 20, figs. 1, 2; LEBOUR, Dinoflagellates Northern Seas (1925) 78, pl. 11, figs. 3a–3c; PAULSEN, Microplancton d'Alboran (1930) 32, fig. 17; BÖHM, Bull B. P. Bishop Mus. 137 (1938) 15, fig. 5a.

Length 46 μ, width 40 μ.

At times found in Manila Bay.
Phalaeroma Cuneus Schütz. Plate 12, fig. 29.

Cell more or less wedge-shaped; epitheca low, broadly rounded; hypotheca with narrowly rounded posterior portion; greatest diameter at region of posterior cingular list, which is subhorizontal and as wide as the transverse furrow. Left sulcal list wide and prominent, right narrow and inconspicuous. Wall provided with a reticulum of small polygons, each with a tiny pore at the center. There are from 25 to 35 polygons bordering the posterior margin of the girdle, on each valve.

Length about 82 μ; greatest depth about 84 μ.

Occasionally met with in Puerto Galera Bay, Mindoro.

Phalaeroma Mitra Schütz. Plate 12, fig. 30.

Phalaeroma mitra Schütz, Nat. Pflanzenfamilien 1 (1896) 27, fig. 38; Okamura, Annot. Zool. Japon. 6 (1907) 134, pl. 5, fig. 43; Rep. Imp. Bur. Fish. 1 (1912) pl. 5, figs. 78-80; Abe, Sci. Rep. Tohoku Imp. Univ. 2 (1927) 385, fig. 3α; Schiller, Arch. f. Protist. 51 (1928) 72; Kofoid and Skogsberg, Mem. Mus. Comp. Zool. 51 (1928) 75; Paulsen, Microplancton d'Alboran (1930) 23.

Phalaeroma rapa Lindemann, Nat. Pflanzenfamilien 2 (1928) 74. fig. 58; Matzenauer, Bot. Archiv 35 (1933) 443.

Body wedge-shaped, more or less oblong anteriorly and becoming compressed posteriorly. Lateral view more or less oval, widest at middle. Epitheca symmetrical, low, only slightly projecting above upper list. Lists of girdle prominent, supported by fine ribs. Left longitudinal list supported by three spines. Test coarsely areolated.

Length and greatest width about 56 μ.

Rarely met with in Manila Bay (seen only once in June, 1936).
PHALACROMA DORYPHORUM Stein. Plate 12, fig. 31.

Dinophysis galea POUCHET, J. Annot. Physiol. (1883) 426, fig. G.

Cell more or less subovate in lateral outline. Epitheca moderately convex to rather flat, hardly extending beyond edge of anterior cingular list. Hypotheca symmetrical, more or less oval with strongly convex posterior margin. Transverse furrow flat or slightly convex. Cingular lists structureless, unequal, both directed apically; left sulcal list with three well-defined ribs and with cingular posterior margin; cell with a triangular sail. Thecal wall finely areolate, with widely scattered pores.

Length about 68 μ; greatest depth about 64 μ. Occasionally met with in Puerto Galera Bay, Mindoro.

Genus *DINOPHYSIS* Ehrenberg (1839)

Body much flattened, egg-shaped, elongate, or forked in lateral view. Epitheca much reduced, usually completely enclosed by upper cingular list which is funnel-shaped. Upper cingular list more developed than lower, both directed upward, supported by fine ribs. Hypotheca making up almost all of body. Posterior tip provided with one or two knobs or spines.

Left sulcal list as in *Phalacroma*.

DINOPHYSIS MILES fo. *INDICA* Clevé. Plate 12, fig. 32.

Cell more or less fork-shaped posteriorly. Epitheca obsolete, upper list more or less cup-shaped, supported by ribs. Longitudinal list ribbon-shaped, supported by three prominent ribs. Dorsal process of hypotheca shorter than ventral, only very slightly curved ventrally at posterior portion and with a tiny knob at tip. Ventral process almost straight, with two tiny knobs at tip.

Length about 148 μ, greatest width about 44 μ. Common in Manila Bay (June).
DINOPHYYSIS CAUDATA Kent, 1882. Plate 12, figs. 33a and 33b.

Dinophysis caudata Kent, Manual Infusoria (1881); *Pavillard*, Bull Soc. Bot. 56 (1909) 881; *Lebour*, Dinoflagellates Northern Seas (1925) 82, text fig. 21e; *Schiller*, Arch. f. Protist. 61 (1928) 78; *Kopoid and Skogsberg*, Mem. Mus. Comp. Zool. 51 (1928) 314, figs. 44, 46; *Paulsen*, Microplankton d'Alboran (1930) 34, fig. 19; *Wang and Nie*, Cont. Biol. Lab. Sci. Soc. 9 (1932) 309, fig. 21; *Matzenauer*, Bot. Archiv 35 (1933) 445; *Campbell*, Journ. Ent. Zool. 26 (1934) 18, fig. 3; *Tai and Skogsberg*, Arch. f. Protist. 82 (1934) 453, text figs. 9, 10D, 10E.

Dinophysis humunculus Stein, Org. Infusionsthiere (1883) 24, pl. 21, figs. 1, 2, 5, 7.

Cell much flattened, epitheca rudimentary, hidden by deep, funnellite, upper, transverse list. Hypotheca long, with an elongate, fingerlike, antapical lobe provided with two spinelets at tip. Upper girdle list prominent, funnel-shaped, supported by strong radial ribs. A small dorsal finlet present. Theca very prominently areolated. Cell with yellow chromatophores. It appears that this species is represented in Manila by both the pedunculate and the abbreviate varieties.

Length, 80 μ to 100 μ; width, 45 μ to 49 μ (excluding longitudinal list).

Common in Manila Bay.

DINOPHYYSIS HASTATA Stein. Plate 12, fig. 34.

Phalacroma hastatum Pavillard, Bull. Soc. Bot. 56 (1909) 283, fig. 4; 70 (1923) 879, 880; *Lebour*, Dinoflagellates Northern Seas (1925) 83, fig. 21e.

Dinophysis hastata var. parvula Lindemann, Bot. Arch. 5 (1923) 219, fig. 6.

Cell inside more or less oblong. Epitheca insignificant, hardly protruding beyond base of anterior cingular list. Transverse groove convex. Anterior cingular list prominently ribbed and seemingly larger than posterior. Posterior cingular list structureless, at base of which is a transverse row of prominent pores. Hypotheca more or less ovoid. Left sulcal list prominent, wider and pointed posteriorly, with three large ribs, posterior rib
longest and rugged. Cell with triangular sail with two large median and several small marginal ribs. Theca areolate or with pores.

Length, about 72 μ; width, 60 μ.
Sometimes met with in Puerto Galera Bay, Mindoro.

Family TINTINNIDINÆ Kofoid Campbell

Lorica usually tubular or saccular; with or without suboral spiral structure, but rarely with collar or suboral differentiation; aboral end sometimes enlarged, never with fins, either open or closed; wall with primary alveoli only, soft, with agglomerating materials, without highly developed, well-separated lamellæ in lorica.

Genus TINTINNIDIUM Kent (1882)

Tintinnididæ with generally elongate lorica with aboral end closed or with a minute opening; collar sometimes present; wall viscous with agglomerating foreign bodies.

TINTINNIDIUM PRIMITIVUM Busch. Plate 13, figs. 35a to 35c.

Lorica tubular, straight, of nearly uniform diameter, without collar. Oral end about 4.8 to entire length. Oral opening occupying entire oral width. Aboral end with a slightly smaller diameter and with only a tiny opening situated at one side of flattened aboral surface. Wall not of uniform thickness, with few agglomerating foreign bodies.

Total length, about 160 μ; oral diameter, about 33.3 μ; basal diameter, 29.6 μ.

TINTINNIDIUM CYLINDRICA sp. nov. Plate 13, fig. 36.

Lorica tubelike, with a wall of medium thickness and a distinct hyaline, structureless collar. Shoulder of bowl at right angles to collar. Height of collar about 16 times in total length. Cavity of uniform diameter, equal to diameter of collar which is about 19 μ. Aboral end rounded, usually with an irregular break (resulting perhaps from detachment). Wall coarsely granular with few coarse agglomerations.

Total length, 126 μ; greatest diameter, 33 μ; thickest portion of wall, 8 μ.
Type locality.—Bacoor Bay, Philippines.
This species differs from *T. ampullarium* in being slenderer, in having a thinner wall, and in having the shoulder of the bowl at right angles to the collar instead of sloping.

Tintinnidium Ampullarium sp. nov. Plate 13, figs. 37a and 37b.

Lorica flask-shaped, with a thick, finely granular wall and a distinct, hyaline, structureless collar. Shoulder next to collar sloping. Height of collar 10 times in total length. Cavity of uniform diameter, equal to oral diameter. Aboral end somewhat flattened, always with irregular opening (perhaps a break resulting from detachment).

Oral diameter, 17 μ; total length, about 100 μ; greatest diameter, 45 μ, which is about twice diameter of aboral region; thickest portion of wall about 14 μ.

Type locality.—Manila Bay, Philippines.

Genus *Leprotintinnus* Jørgensen (1899)

Tintinnididæ with tubelike, elongate lorica open at both ends; collar absent; surface sticky with agglomerating foreign bodies; wall soft and coarsely alveolar.

Leprotintinnus Nordquisti (Brandt). Plate 13, figs. 38a to 38c.

Tintinnopsis nordquisti BRANDT, Ergeb. Plankton Exp. 3 (1906) 18, pl. 24, figs. 1–4; 3 (1907) 166, 167, 444, 473; OKAMURA, Annot. Zool. Japon. 6 (1907) 138, pl. 6, fig. 61.

Lorica long, tubular; basal portion well expanded, about 2.6 wider than rest of tube; wall with fine agglomerating particles.

Most of Philippine specimens examined have total length, 118 μ; oral diameter, 40 μ; diameter of basal portion of tube, 29 μ; diameter of expanded base, about 78 μ. Some variations occur, however. The individual shown in Plate 13, fig. 38b, is very long and slightly narrower, while the individual shown in Plate 13, fig. 38c, is much shorter, slightly thicker, and with a narrower expanded base.

Very common in Manila Bay, Philippines.

Leprotintinnus Tubulosus sp. nov. Plate 13, fig. 39.

Lorica long, in form of a simple tube, basal portion not at all expanded; oral diameter about 3.9 in total length; wall thin.
with fine agglomerating particles. Lorica about 140 \(\mu \) long and 37 \(\mu \) in diameter. Specimens showing transverse budding are often met with.

Type locality.—Manila Bay, Philippines.

Family CODONELLIDÆ Kent

Bowl globose, conical or cylindrical; oral end without hyaline structure or collar. Aboral end generally closed, rounded or pointed, with or without horn; wall with fine primary alveoli and coarse secondary structures, which are irregular in arrangement and size and not differentiated into inner and outer lamina.

Genus TINTINNOPSIS Stein (1867)

Codonellidæ with lorica usually bowl-shaped, never with a narrow oral opening; aboral end usually closed, but very rarely with an irregular (broken ?) aperture; wall thin, with a fine primary structure and freely agglomerated matter and detritus.

TINTINNOPSIS BACOORENSIS sp. nov. Plate 14, fig. 46.

Lorica campanulate, with an expanded bulbous fundus and a spreading oral rim. Between fundus and flaring collar a cylindrical middle portion, the neck. Oral rim rugged, about 1 in total length; diameter of neck about 1.75 in total length; bulbous portion about 1.38 in total length. Wall with thick agglomerations of various sizes.

Total length, 63.8 \(\mu \); oral rim diameter, 63.8 \(\mu \), neck, 29.6 \(\mu \); fundus, 41.9 \(\mu \).

This species differs from *T. mortensenii* in having a bulbous fundus distinctly set off from the central cylindrical portion which has a smaller diameter. In the figure of Kofoid and Campbell as well as in that of Okamura such a differentiated neck is not visible.

Type locality.—Manila Bay, Philippines.

TINTINNOPSIS BUTSCHLII Daday. Plate 14, fig. 41.

Tintinnopsis campanula var. *butschlii* BRANDT in part, Ergeb. Plankton-Exp. 3 (1907) 151–152, 456; JÖRGENSEN, Rep. Danish Ocean. Exp. Biol. 2 (1924) 67, 69, fig. 76a; Tierwelt Nord. Ostsee pt. 2 8 (1927) 6, 7, fig. 2; ENTZ, Arch. f. Protist. 15 (1909) 106, pl. 20, fig. 46, 47, 49; PAULSEN, Microplancton d'Alboran 4 (1930) 96.
Lorica bell-shaped, composed of an everted, expanded oral region and a convex rounded bowl; oral rim irregular, diameter about 1.05 in length; bowl narrowest about upper third, transdiameter about 2.1 in total length. Oral diameter, above 67 μ; smallest transdiameter, about 34; total length, about 71.

Rarely met with in Bacoor Bay (a part of Manila Bay), Philippines.

TINTINNOpsis gracilis Kofoid and Campbell. Plate 14, fig. 42.

Tintinnopsis karajacensis var. a BRANDT, Ergeb. Plankton-Exp. 3 (1906) 16, pl. 19, figs. 1, 2, 21; (1907) 163, 488; HADA, Sci. Rep. Tohoku Imp. Univ. (4) 7 (1932) 558, text fig. 6.

Lorica tubular, oral diameter 3.4 in total length; oral rim regular; aboral half slightly swollen with a slightly greater diameter than oral half. Aboral region conical but without a definite point. Wall thick, with heavier coarse agglomerations on the aboral half.

Length, about 112 μ; oral diameter, 33 μ.

Unlike the figure of Kofoid and Campbell, these specimens show a distinct constriction between the oral and aboral halves. In some specimens the aboral end is seemingly open.

Quite common in Manila Bay.

TINTINNOpsis loricata (Brandt). Plate 14, fig. 43.

Tintinnopsis dadayi var. b loricata BRANDT, Ergeb. Plankton-Exp. 3 (1906) 16, 17, pl. 19, fig. 4, pl. 20, fig. 11; (1907) 130, 144-145, 470.

Lorica an elongate bell; oral rim ragged, with diameter 1.7 in total length; suboral region in the form of a flaring collar, 5.1 in total length; test or lorica cylindrical, diameter 2.16 in total length; aboral region convex-conical, ending bluntly; agglomeration coarse, with distinct primary alveoli.

Length 152 μ.

Rarely met with in Manila Bay.

TINTINNOpsis manilensis sp. nov. Plate 14, fig. 44.

Lorica tall, campanulate, with an irregular oral opening about 1.2 in total length, and a convex, rounded, expanded fundus. Bowl narrowest at its middle, which is visibly in the form of a neck; oral margin of lorica in the form of a flaring collar, di-
verging to about 45°; neck diameter 3, neck length also 3 in total length; bulbous portion with a diameter 2.2 in total length; wall with thick agglomerations of various sizes and shapes.

Oral diameter, about 67 μ; smallest transdiameter of neck, 26 μ; diameter of fundus, 37 μ; total length, 81.5 μ.

This species is closely allied to *T. bützchlii*. It differs from the latter, however, in having a distinct narrowed portion of the bowl, here called the neck, which is visibly set off from the bulbous terminal fundus. It is almost twice as long as *T. bacoorensis*.

Type locality.—Manila Bay.

TINTINNOPHIS MAJOR Meunier. Plate 15, fig. 48.

Lorica small, more or less cup-shaped; oral diameter about the same as length; bowl with straight sides at oral half; aboral half more or less rounded (50°, then 110°); wall with coarse, angular agglomerations of varied sizes.

Length, about 52 μ.

Common in Manila Bay.

T. major was first reported from much colder waters off Tromsö, Norway.

TINTINNOPHIS MORTENSENI Schmidt. Plate 15, fig. 49.

Tintinnopsis mortensenii SCHMIDT, Vidensk. Medd. 52 (1901) 186, fig. 3.

Tintinnopsis mortensenii BRANDT, Ergeb. Plankton-Exp. 3 (1906) 17, 18, pl. 21, figs. 13, 13a; (1907) 152, 444, 472; OKAMURA, Annot. Zool. Japon. 6 (1907) 138, pl. 6, fig. 65.

Lorica campanulate, with a rounded fundus, not distinctly set off from the more or less straight side, and a wide, everted oral rim. Diameter of bowl about 1.6 in entire length of lorica which in turn is 1.4 in oral rim diameter.

Total length, 63 μ; diameter of bowl, 36 μ; diameter of oral rim, 83 μ.

Met with in Bacoor Bay during January.

This species differs from *T. bacoorensis* in having a wider, more flaring oral rim and in not having a distinct separation between the fundus and the cylindrical portion of the lorica.
Roxas: Philippine Marine Protozoa

TINTINNOPSIS RADIX (Imhof). Plate 14, fig. 45.

Tintinnopsis fracta OKAMURA, Annot. Zool. Japon. 6 (1907) 137, pl. 6, fig. 57; BRANDT, Ergeb. Plankton-Exp. 3 (1906) pl. 23, figs. 1, 3-5, 9-13, pl. 31, fig. 8; (1907) 174.

Lorica an elongate cone, gradually tapering from a wide oral end to an irregularly pointed aboral tip. Oral rim irregular, about 5.6 entire length. Agglomerations fine.

Total length about 247 μ.

Very common in Manila Bay.

TINTINNOPSIS TOCANTINENSIS Kofoi and Campbell. Plate 14, fig. 46.

Tintinnopsis afera var. a BRANDT, Ergeb. Plankton-Exp. 3 (1906) 19, pl. 25, figs. 2, 7; (1907) 129, 177.

Lorica elongate, anterior cylindrical portion about 2 in total length, transdiameter about 5 in total length; aboral fourth of lorica bulbous, diameter about 3.6 in total length; dilated portion tapering abruptly into a stout aboral horn, 5 in total length.

Oral diameter, 18.5 μ; total length, 93 to 110 μ; diameter of bulbous portion, about 34 μ.

Very common in Manila Bay.

TINTINNOPSIS TURGIDA Kofoi and Campbell. Plate 14, fig. 47.

Tintinnopsis karacensis var. d BRANDT, Ergeb. Plankton-Exp. 3 (1906) 17, 19, pl. 19, figs. 9, 20, pl. 26, fig. 9; (1907) 163, 469; HADA, Sci. Rep. Tohoku Imp. Univ. (4) 7 (1932) 558, text fig. 6.

Lorica cylindrical orally, expanding aborally to a bulbous portion 1.3 times diameter of long neck. Neck about 1.7, bul-
bous portion about 2.55 in total length. Oral region slightly everted to about diameter of bulbous portion. In some specimens this oral eversion is not present. Wall with irregular particles of various shapes and sizes.

Total length, 85 μ.

Very common in Manila Bay.

Family CODONELLOPSIDÆ Kofoid and Campbell

Lorica more or less top-shaped, oral rim entire; hyaline collar with annular or spiral structure and with bowl which is short, ovate, with closed rounded or pointed, aboral horn, and with coarse secondary structure.

Genus CODONELLOPSIS Jörgensen (1924)

Codonellopside with lorica divided into an annular collar and a bowl; collar hyaline, distinctly set off from bowl, and with spiral structure or with one or two sometimes obscure bands; bowl oval to spheroidal, wall with primary, secondary, and tertiary structure; agglomerating material often on wall.

CODONELLOPSIS OSTENFELDI (Schmidt). Plate 15, fig. 50.

Codonella ostefeldi SCHMIDT, Vidensk. Medd. 52 (1901) 187, fig. 4; BRANDT, Ergeb. Plankton-Exp. 3 (1906) 15, 17; pl. 14, figs. 1, 2; pl. 15, fig. 2; pl. 20, fig. 10; (1907) 122–124; OKAMURA, Annot. Zool. Japon. 6 (1907) 137, pl. 6, figs. 53a, 53b; KOFOID and CAMPBELL, Univ. Cal. Pub. Zool. 34 (1929) 84, fig. 160.

Codonella morchella var. ostefeldi SCHMIDT, Vidensk. Medd. 52 (1901) 187; CLEVE, Ark. f. Zool. 1 (1903) 350; OKAMURA Annot. Zool. Japon. 6 (1907) 137, pl. 6, fig. 54.

Tintinnopsis ostefeldi BRANDT, Ergeb. Plankton-Exp. 3 (1907) 123, 125.

Lorica with bowl and collar; collar nearly cylindrical, with little or no oral eversion, its diameter 1.7 in its length; mostly with 7 rows of prominent, closely set apertures, bowl spherical, slightly longer than wide; shoulder moderately emergent, aboral end rounded; agglomerated particles coarse.

Length, about 100 to 120 μ.

Rather common in Manila Bay.

Family COXLIELLIDÆ Kofoid and Campbell

Lorica open or closed at aboral end, if closed often irregular; collar present or absent; with coiled lamina forming lorica fully or partially; wall without agglomerated particles.
Genus COXLIELLA Brandt (1907)

Lorica usually tall, bowl- or vaselike; oral rim never denticulate, without differentiated collar; wall double, usually with two laminae, with coarse, secondary structure; lorica formed by a single spiral band with superimposed turns of varying heights to a greater or less extent.

COXLIELLA LONGA (Brandt). Plate 15, fig. 51.

Cyttarocylis (?) ampla (?) var. c longa BRANDT, Ergeb. Plankton-Exp. 3 (1906) 20, pl. 28, fig. 3; (1907) 272, 453, 470.
Cyttarocylis (?) laciniosa var. longa BRANDT, Ergeb. Plankton-Exp. 3 (1907) 31, 262, 272, 453, 469, 470.
Coxliella laciniosa var. longa LAACKMANN, Deuts. Südp. Exp. 11 (1909) 456.

Lorica bullet-shaped, oral diameter about 2 in total length; oral rim irregularly and finely denticulate; bowl cylindrical for 0.6 of total length; wall with 13 turns.
Length about 205 μ; oral diameter, 102 μ.
Occasionally met with in Manila Bay (August 3, 1936). Differs from a species described by Kofoid and Campbell in not having a “short, stout, curved point” at aboral end.

Family CYTTAROCYLIDÆ Kofoid and Campbell

Lorica usually large, bell-shaped, often stalked. Oral rim variable, with or without a collar; aboral end closed, without spiral structure. Wall with primary and very regular secondary and sometimes tertiary structure, with prominent prismatic structure between the two lamellæ of the lorica.

This family is usually divided into 2 subfamilies: Cyttarocylineæ in which a flaring collar is usually present and a distinct aboral horn is absent; and Favellineæ in which a flaring collar is absent, but an aboral horn often present.

Genus FAVELLA Jörgensen (1924)

Favellineæ with lorica usually campanulate or subconical: oral rim entire, or with small skirt, or with denticles, no collar distinct from bowl, but sometimes one or more rings; aboral horn usually present, thick-walled; wall with two lamellæ, usually with coarse, intermediate prismatic secondary alveoli and a very fine, primary structure, never with regular polygonal structure.

FAVELLA SIMPLEX sp. nov. Plate 15, fig. 52.

Lorica campanulate, widest at oral region, its total length about 2.17 oral diameter, oral rim smooth; oral region with al-
most straight sides and bowl almost cylindrical to about 0.46 of its length; aboral region with slightly convex sides and contracting to about 55°; aboral horn about 0.32 oral diameter, with a slight constriction at middle, tip pointed. Wall double, thin and structureless. Oral diameter, 70 μ; total length, 152 μ; aboral horn, 25 μ.

Type locality.—Manila Bay.

FAVELLA PHILIPPINENSIS sp. nov. Plate 15, fig. 53.

Lorica cylindrical, stout, its length about 1.7 oral diameters; oral rim slightly serrate or denticulate, with two narrow rings; orally bowl cylindrical for about 0.70 of its length, with a slight nuchal constriction; aboral region more or less conical, contracting to about 70°; aboral horn about 0.43 oral diameter in length, and a pointed cone (20°), tip pointed; wall very smooth and finely alveolar.

Oral diameter, 108 μ; length excluding horn, 215 μ; aboral horn, 47 μ.

Similar to _F. panamensis_ Kofoid and Campbell in many respects, except in the fine serration of the oral rim. A number of specimens were seen in which the lorica is slightly wider (oral diameter about 1.5 in the length).

Type locality.—Manila Bay.

FAVELLA ELONGATA sp. nov. Plate 15, fig. 64.

Lorica cylindrical, long, its length about 2.6 oral diameters; oral rim irregularly serrate with two very narrow rings without a definite nuchal constriction; anteriorly bowl cylindrical for about 70 per cent of its length; aboral region more or less rounded, contracting gradually to about 80 per cent; aboral horn proportionally small for the size of the bowl, 0.38 oral diameter, with rounded tip. Wall alveolar, double, with striae between.

Oral diameter, 115 μ; length of bowl, about 299 μ; aboral horn, 43 μ.

This species is much longer than _F. philippinensis_, and the aboral region is more rounded.

Type locality.—Manila Bay.

FAVELLA AZORICA (Cleve). Plate 15, fig. 55.

Lorica campanulate, oral diameter about 1.4 in length; oral region with one annulus; bowl almost cylindrical for over one-half orally, then converging to about 75° to form a blunt, somewhat rounded, thick-looking abapical end; wall finely reticulate, with two distinct lamellae.

Length, about 104 μ; oral diameter about 70 μ.

Specimens examined agree closely with Marshall's figure of a specimen obtained from the Great Barrier Reef, except for having only one annulus.

Occasionally met with in Puerto Galera Bay, Mindoro.

Family PTYCHOCYLIDÆ Kofoid and Campbell

Lorica stout, kettle- or acorn-shaped; with or without suboral ledge or thickened region; aboral portion sculptured externally; wall with two lamellae, with a distinct reticulum except at the suboral region.

Genus EPILOCYLYS Jørgensen (1924)

Ptychocylidae with acornlike lorica; with a reticulated zone on the posterior portion which sometimes extends toward the collar, but never to the oral rim; wall thick, with large, heavy, and developed reticulation.

EPILOCYLYS EXQUISITA (Brandt). Plate 16, fig. 56.

Ptychocylis exquisita var. e BRANDT, Ergeb. Plankton-Exp. 3 (1906) 29, pl. 61, figs. 1, 1a; (1907) 295–296, 482.

Ptychocylis exquisita var. f BRANDT, Ergeb. Plankton-Exp. 3 (1906) 29, pl. 61, fig. 4; (1907) 296, 482.

Lorica acornlike, wide in diameter in proportion to length; oral rim smooth, with a diameter about 1.3 in total length; aboral region with a large, prominent horn about 4 in total length; fundus about 90°; wall of oral region coarsely granular; reticulations coarse, mostly on aboral half, only few lines reaching oral rim.

Length about 92 μ; oral diameter about 77 μ.

Obtained from Puerto Galera Bay, Mindoro.

EPILOCYLYS RALUMENSIS (Brandt). Plate 16, fig. 57.

Ptychocylis reticulata var. _ralumensis_ BRANDT, Ergeb. Plankton-Exp. 3 (1906) 28, 29, pl. 63, figs. 3, 8; (1907) 289.

Lorica moderately stout, oral diameter about 1.7 in total length; collar present, erect and entire; a suboral ledge present between oral rim and collar; bowl bulging; fundus about 102°; aboral horn about 30°, subconical, pointed, about 5.7 in total length; bowl uniformly and heavily reticulated throughout.

Total length, about 76 μ; oral diameter, 52 μ; aboral horn, 16 μ.

Obtained from Puerto Galera Bay, Mindoro.

EPILOCYLIS UNDELLA (Ostenfeld and Schmidt). Plate 16, fig. 58.

Cyttacocylis undella Ostenfeld and Schmidt. Vidensk. Medd. 52 (1901) 181, fig. 30.

Ptychocylis undella Brandt, Ergeb. Plankton-Exp. 3 (1906) 29, pl. 59, figs. 1–5, pl. 60, figs. 1–6, pl. 61 (1907) 288; Okamura, Annot. Zool. Japon. 6 (1907) 138, pl. 6, fig. 51; Rep. Imp. Bur. Fish 1 (1912) 24, pl. 5, fig. 97.

Lorica kettle-shaped, with a prominent aboral horn; oral rim smooth, with a diameter about 1.7 in total length; aboral horn about 4.5 in total length; reticulations coarse, confined on aboral half of bowl; oral half with very fine granulation, two laminae of wall well separate.

Length, about 108 μ; oral diameter, about 64 μ; aboral horn, 24 μ.

Obtained from Puerto Galera Bay, Mindoro.

Family PETALOTRICHIDÆ Kofoid and Campbell

Lorica cup-shaped; oral rim smooth, wavy or denticulate; mouth usually wide, with one or two collars; wall hyaline or with primary prismatic structure.

Genus METACYLIS Jörgensen (1924)

Lorica short and wide, oval or elongate; mouth wide, with a low collar with few closely-set annuli; bowl wide, aboral end rounded, flattened, pointed or with a spinule; wall with or without distinct structure or hyaline.

METACYLIS HEMISPHERICA sp. nov. Plate 16, fig. 59.

A small species with stout basketlike lorica, oral diameter about 1.09 in total length; collar with height about 4.3 in total length, slightly contracting with four spiral laminae; bowl rounded abapically; wall hyaline.

Length, about 45 μ; oral diameter, about 41 μ; greatest diameter of bowl, about 48 μ.
Differs from *A. corbula* Kofoid and Campbell in being shorter but wider and in having a much rounded bowl abapically.

Obtained from Puerto Galera Bay, Mindoro, Philippines.

METACYLIS KOFOIDI sp. nov. Plate 16, fig. 60.

Lorica stout, basketlike; oral diameter 1.2 in length; collar very low, about 6 in length, wall slightly contracting and with three spiral laminae; bowl rounded, but with a slight knoblike protuberance abapically; wall hyaline.

Length, about 45 μ; oral diameter, about 37 μ; greatest diameter of bowl, about 45 μ.

Differs from *M. hemisphærica* in having a lower collar with only three laminae, in being narrower, and in having a knob of the bowl abapically.

Type locality.—Puerto Galera Bay, Mindoro.

Named after Prof. Charles A. Kofoid, Protozoologist, University of California.

Genus PETALOTRICH A Kent (1882)

Lorica bowl-shaped or conical; oral shelf spreading; oral ridge low, collar conical, flaring; nuchal constriction slight or deep; bowl saclike or conical; one row of suboral fenestrae with horizontal axis; subnuchal fenestra circular or elliptical, with oblique or vertical axis.

PETALOTRICH A MAJOR Jörgensen. Plate 16, fig. 61.

Petalotricha ampulla var. major JÖRGENSEN, Rep. Danish Oceanog. Exp. Biol. 2 (1924) 89, figs. 100a, 100b.

Lorica pot-shaped, oral diameter 0.85 in length; oral shelf slightly cupped, rim wavy; collar (about 60°) with straight sides; bowl almost rounded, about as high as it is wide; wall with few scattered fenestrae above equator of bowl; a single line of small fenestrae below oral rim.

Length, about 92 μ; oral diameter, 108 μ.

Obtained from Puerto Galera Bay, Mindoro.

Family RHABDONELLIDÆ Kofoid and Campbell

Lorica chalice-shaped to conical; oral aperture smooth, without teeth; a gutter present about mouth between two wall laminae; aboral end closed or with only a minute pore; longitudinal ribs present, simple, branched or anastomosing, reaching from pedicel to mouth; wall often with fenestrae between ribs.
Genus RHABDONELLA Kent (1907)

Lorica usually elongate, chalice-shaped, oral rim without teeth, but with a gutter between inner and outer laminae; pedicel more or less protracted without apophyses; ribs prominent, may be branched; usually vertical or slightly twisted, with fenestrae between them.

RHABDONELLA AMOR (Cleve). Plate 17, fig. 62.

Ptychocylis (Rhabdonella) amor Brandt, Ergeb. Plankton-Exp. 3 (1906) 27, pl. 54, figs. 4, 6, 12-15; (1907) 21, 327-331, 453.

Lorica short-subconical, without perceptible pedicel; oral diameter about 2 in length; suboral shelf slightly flaring, oral rim thin, immergent; bowl convex, inverted-subconical, changing from about 16° orally to about 38° aborally; ribs far apart, running more or less in a left-handed spiral near aboral end, few are branched, with several rows of fenestrae between two of them.

Length, about 88 μ; oral diameter, 44 μ.
Common in Puerto Galera Bay, Mindoro.

RHABDONELLA SPIRALIS (Fol). Plate 17, fig. 63.

Tintinnus spiralis Fol, Arch. Sci. Phys. Nat. (3) 5 (1881) 21, pl. 1, fig. 4.

Cyttarocylis spiralis Ostenfeld and Schmidt, Vidensk. Medd. 52 (1901) 180, fig. 29; Schmidt, Vidensk. Medd. 52 (1901) 188.

Ptychocylis (Rhabdonella) spiralis Brandt, Ergeb. Plankton-Exp. 3 (1906) pls. 52-54, figs. 2-7; (1907) 321, 323, 327; Okamura, Annot. Zool. Japon. 6 (1907) 140, pl. 6, fig. 52; Entz, Arch. f. Protist. 15 (1909) 109, pl. 20, fig. 2.

Lorica tall, chalice-shaped, about 4.8 oral diameters in total length; oral rim only with a slight flare; bowl orally almost cylindrical, then tapering abruptly to about 28°; aboral end in the form of a long, narrow pedicel with almost straight sides, open at end; length of pedicel only slightly less than half of
total length; about 16 ribs visible from one side, straight orally, but with slight left-handed twist aborally; usually one vertical row of fenestrae between two ribs.

Total length, about 327 \(\mu \); oral diameter, 68 \(\mu \).

Often met with at Puerto Galera Bay, Mindoro.

Rhabdonella brandti Kofoid and Campbell. Plate 17, fig. 64.

Ptychocylis (Rhabdonella) amor var. cuspidata BRANDT, Ergeb. Plankton-Exp. 3 (1906) 27, pl. 54, figs. 3, 10, 11; (1907) 315–320, 331, 332, 453.

Lorica chalice-shaped, of medium length, with a distinct pedicel; oral diameter about 3 in length, oral rim without visible flare; oral third of bowl more or less cylindrical, then bowl converging to about posterior third from pedicel, pedicel stout, about one-fourth of total length and closed at tip; about eighteen ribs visible from one side, usually running vertically at oral region but with slight left-handed twist basally, closely set, with one vertical row of fenestrae between two of them.

Length, about 192 \(\mu \); oral diameter, about 64 \(\mu \).

Common in Puerto Galera Bay, Mindoro.

Rhabdonella fenestrata sp. nov. Plate 17, fig. 65.

Lorica small, oral diameter about 16 in total length; oral rim with a pronounced gutter between inner and outer laminae; bowl cylindrical toward oral half, then becoming subconical, first about 65°, then contracting to about 32° to form short, blunt pedicel about 2.5 in oral diameter; ribs about 3.5, very prominent, with a slight counter-clockwise spiral; one row of well-developed fenestrae between two ribs.

Total length, about 80 \(\mu \); oral diameter, about 48 \(\mu \).

Type locality.—Puerto Galera Bay, Mindoro.

Family **Tintinnidæ** Claparède and Lachmann

Lorica rigid, variously formed; oral region usually flaring (except *Bursaopus*); aboral end open or closed; wall hyaline, usually without secondary structure; with two, four, or eight macronuclei and micronuclei, and sixteen to twenty-four membranelles.

Genus Tintinnus Schrank (1803)

Lorica in form of a truncated cone or cylinder, open at both ends; wall hyaline, homogenous, never with spiral structure, rarely externally wrinkled.
Lorica in form of a truncated cone, 3° 6' with only a very slight median bulge; oral diameter about 4.3 in length. Length about 177 μ.

Rarely met with in surface plankton of Manila Bay.

REFERENCES

75. 2 Roxas: Philippine Marine Protozoa 131

74. MÜLLER, O. F. Zoologicae danicae prodromus. Hauiae (1777; 1781).

77. Nitzsch, C. L. Beitrag zur Infusorkunde oder Naturbeschreibung der Zerkerien und Bazillarien, Neue Schriften d. naturf. Ges. zu Hallo 3 (1817).
86. Paulsen, O. Études sur le microplancton de la mer d’Alboran. Trabajos No. 4 (1930) 1-108.
92. Pavillard, J. Phytoplankton (diatomees, peridiniens) provenant des campagnes scientifiques de S. A. S. le Prince Albert 1er de Monaco. Resultats des Campagnes Scientifiques 82 (1931) 3-207.

ILLUSTRATIONS

[In Plates 1 to 11, a, ventral view; b, dorsal view; c, apical view; d, abapical view; e, lateral view.]

PLATE 1

Fig. 1, a, c, and d. *Peridiniopsis asymmetrica*; × 720.
2, a, c, and d. *Diplopseltopsis minor*; × 808.

PLATE 2

Fig. 3, c and d. *Goniaulux polyedra*; × 565.
4, a and d. *Goniaulux digitale*; × 842.
5, a and b. *Podolampas bipes*; × 565.

PLATE 3

Fig. 6, a to d. *Peridinium conicoides*; × 585.
7, a to e. *Peridinium latissimum*; × 585.

PLATE 4

Fig. 8, a to e. *Peridinium leonis*; × 610.
9, a to d. *Peridinium subinerme*; × 610.

PLATE 5

Fig. 10, a to d. *Peridinium depressum*; × 326.
11, a to d. *Peridinium obtusum*; × 652.

PLATE 6

Fig. 12, a, b, d, and e. *Peridinium venustum*; × 493.
13, a, c, and d. *Peridinium africanoides*; × 493.

PLATE 7

Fig. 14, a, b, and d. *Peridinium divergens*; × 540.
15, a to d. *Peridinium curtipes*; × 540.

PLATE 8

Fig. 16, a to d. *Peridinium pellucidum*; × 630.
17, a and b. *Ceratium furca*; × 281.
18, a. *Ceratium candelabrum*; × 374.
19, a and b. *Ceratium pentagonum*; × 374.

PLATE 9

Fig. 20, a. *Ceratium dens*; × 436.
21, a and b. *Ceratium fucus*; × 436.
22, a and b. *Ceratium tripus*; × 326.
The Philippine Journal of Science

Plate 10

Fig. 23, a. Ceratium breve; × 360.
24, a. Ceratium macroceros; × 360.
25, a. Ceratium trichoceros; × 270.

Plate 11

Fig. 26, a. Ceratium contrarium; × 382.
27, a. Ceratium molle; × 382.

Plate 12

Fig. 28. Phalocroma rotundatum; × 630.
29. Phalocroma cuneus; × 374.
30. Phalocroma mitra; × 593.
31. Phalocroma doryphorum; × 593.
32. Dinophysis miles fo. indica; × 374.
33. Dinophysis caudata; a, var. abbreviata; b, var. pedunculata; × 593.
34. Dinophysis hastata; × 593.

Plate 13

Fig. 35, a to c. Tintinnidium primitivum; a, b, aboral view; c, oral view. × 505.
36. Tintinnidium cylindrica, × 505.
37, a, b. Tintinnidium ampullarum; b, oral view, × 505.
38, a, b. Leprotintinnus nordquisti, slender form; × 287.
38, c. Leprotintinnus nordquisti, stout form; × 573.
39. Leprotintinnus tubulosus; × 573.

Plate 14

Fig. 40. Tintinnopsis bacoorensis; × 540.
41. Tintinnopsis bütschlii; × 540.
42. Tintinnopsis gracilis; × 606.
43. Tintinnopsis loricata; × 540.
44. Tintinnopsis manilensis; × 540.
45. Tintinnopsis radix; × 270.
46. Tintinnopsis tocantinensis; × 540.
47. Tintinnopsis turgida; × 540.

Plate 15

Fig. 48. Tintinnopsis major; × 570.
49. Tintinnopsis mortensenii; × 360.
50. Codonellopsis ostenfeldi; × 540.
51. Coxiiella longa; × 606.
52. Favella simplex; × 360.
53. Favella philippinensis; × 270.
54. Favella elongata; × 215.
55. Favella azorica; × 360.
Roxas: Philippine Marine Protozoa

Plate 16

Fig. 56. *Epiploeylis exquisita*; × 659.
57. *Epiploeylis ralumensis*; × 659.
58. *Epiploeylis undella*; × 659.
59. *Metacylis hemisphærica*; × 624.
60. *Metacylis kofoidi*; × 624.
61. *Petalotricha major*; × 416.

Plate 17

Fig. 62. *Rhabdonella amor*; × 760.
63. *Rhabdonella spiralis*; × 293.
64. *Rhabdonella brandti*; × 293.
65. *Rhabdonella fenestrata*; × 760.

Text Figures

Fig. 1. Number of intercalaries and their relation to the precingulars in the groups *Orthoperidinium*, *Metaperidinium*, and *Paraperidinium*.

2. Number of intercalaries in their relation to the precingulars in the subgenera of *Peridinium*.
PLATE 6.
PLATE 10.
ROXAS: PHILIPPINE MARINE PROTOZOA.

PLATE 11.
Roxas: Philippine Marine Protozoa.

PLATE 12.
PLATE 13.